Jump to content
Avant Labs
Sign in to follow this  
  • entries
    17
  • comments
    0
  • views
    2544

About this blog

Neobium(tm) product write-ups, plus other science related the microbiome.

Entries in this blog

Par Deus

Probiotics, the Gut, and Muscle Mass

Currently, probiotics are mostly thought of and used in relation to a healthy digestive system (reducing upset stomach, gas and bloating, diarrhea, and IBS type symptoms) and to a lesser extent, the immune system (coughs, colds, and general sinus and respiratory health). While they certainly are indeed useful for such applications, the ramifications of an unhealthy gut and microbiota go far, far beyond that.

The gut and its microbiome are essentially a massive endocrine organ, controlling and influencing basically your entire body and brain. And, given that all of the trillions of bacteria that call it home originally came from outside your body – and entered without your express written consent – it is by far the most important organ in which we can take steps to manipulate and regain control.

“You are what you eat” is more accurate than we ever realized.

We will first look at some basic science on how this all works. Then, we will look at studies that have shown alterations in the microbiotic make-up of the gut, and the correlations they display in metabolic health, disease, and fitness. We will particularly focus on the adverse effects of dysbiosis in regard to muscle mass, including diminished protein absorption, testosterone levels, and insulin signaling in the skeletal muscle which results in downregulation of anabolic pathways and upregulation of catabolic ones, ultimately resulting in poor nutrient partitioning that favors accumulation of fat over muscle.

It is a massive subject, far too much to discuss in complete depth, here, so we’ll do our best to keep it as short and sweet as possible while still giving you enough background in this field to understand the shocking reality, scope, and importance of this microscopic invasion.

Then, we will get down to business and into the specifics of the science of making yourself king of your own biological castle, again, with special emphasis on a lean, muscular body.

 

The Basics

The Western lifestyle, including diet and lack of exercise, as well as artificial sweeteners, antibiotics, and alcohol (and, in all likelihood, genetics, though the data just isn’t quite there, yet) leads to an imbalance of the bacterial composition of the gut (1, 2). This results in the excess production and release of inflammatory signals, such as Lipopolysaccharide and TNF-alpha, which subsequently escape the gut and enter the rest of your body, causing havoc (3). Gut dysbiosis also negatively alters production of short-chain fatty acids, with butyrate being most important. This ultimately negatively affects anabolic and anti-catabolic signaling of insulin and other growth factors and pathways, as well as testosterone production.

Lipopolysaccharide (LPS) and its downstream inflammatory and redox sensitive pathways will compose the bulk of our focus. LPS, also known as endotoxin, is the major component of the outer membrane of Gram-negative bacteria. These are the ones behind pathogenic bacterial infections like E coli and Salmonella, as well as the bad bacteria of gut dysbiosis that chronically or semi-chronically reside inside you.  LPS binds to Toll Like Receptor-4  (TLR-4) and produces a potent immune response in mammals (4). TLR-4 belongs to the pattern recognition family of receptors which recognize pathogen-associated molecular patterns that are expressed on infectious agents (5).  This triggers inflammatory cytokines like TNF-alpha, which then trigger reactive oxygen species.  Within the gut, this leads to the general digestive issues and inflammatory bowel disorders like IBS and colitis that you have commonly known probiotics as being used to alleviate (6).

While fixing digestive disorders will come along for the ride, our primary focus is going to be on body composition and metabolic health. In other words, we want to make you more muscular, stronger, and leaner. However, there really is so much more to it than that, as a few quotes from the literature aptly demonstrate:


“Changes in the composition of the gut microbiota (dysbiosis) may be associated with several clinical conditions, including obesity and metabolic diseases, autoimmune diseases and allergy, acute and chronic intestinal inflammation, irritable bowel syndrome (IBS)…” (7)

 

“In this milieu… disturbance of the gut microbiota balance and the intestinal barrier permeability is a potential triggering factor for systemic inflammation in the onset and progression of obesity, type 2 diabetes and metabolic syndrome.” (8)

 

“Through these varied mechanisms, gut microbes shape the architecture of sleep and stress reactivity of the hypothalamic-pituitary-adrenal axis. They influence memory, mood, and cognition and are clinically and therapeutically relevant to a range of disorders, including alcoholism, chronic fatigue syndrome, fibromyalgia, and restless legs syndrome… Nutritional tools for altering the gut microbiome therapeutically include changes in diet, probiotics, and prebiotics.” (9)

 

As you can see, alterations in the microbiota can affect basically everything, but the good news is that it is also ripe for positive manipulation.

Getting back to the gut and body composition, the aforementioned Lipopolysaccharide (LPS), in combination with the Western diet, disrupts the endocannabinoid system,  ultimately leading  to  an increase in intestinal motility (speed of food going through) in the proximal parts of the intestine (10, 11). This leads to less efficient absorption of nutrients, of which protein and nitrogen are of particular concern. It also reduces nutritive feedback signals that tell the brain you are well fed, thus able to ramp up energy intensive protein synthesis (12, 13). LPS and inflammation also damages the endothelia and microvilli of the gut, further hampering digestion and absorption of nutrients, again with protein and amino acids being of particular concern (14, 15, 16 , 17).

It gets much worse from there. Along with this inflammatory state is a disruption in the intestinal barrier. Intestinal permeability is increased, and these inflammatory agents spill out systemically. This is often called a “leaky gut”. This results in a chronic, low-level inflammatory state in the entire body. The biggest culprit here is, once again, LPS (18).

LPS interacts with the cannabinoid system in the body and brain, just as in the intestine. In the fat tissue, this leads to activation of PPAR-gamma, and an upregulation of triglyceride synthesis, fat cell formation, and fat storage (19) More important is its activation on TLR-4 which, along with other downstream inflammatory signals (TNF-alpha, interleukins, NF-kB), promotes insulin insensitivity in skeletal muscle, reducing it anabolic and anti-catabolic effects (20, 21). There is also a blood-testis barrier directly analogous to the gut barrier, with equally negative results on testosterone production from these inflammatory invaders (22, 23). This is really bad news in combination with the PPAR-gamma activation in fat cells as it drives nutrient partitioning toward accumulation of fat over muscle. At this point, your phenotype is getting wrecked.  You have “skinny fat” or, if blessed with being naturally lean, “hargainer” physiology. Obviously, this is not at all what you want.

And, it is just a bunch of microscopic bacteria that call your gut “home” causing all of this devastation. This is the Gut-Microbiota-Muscle axis gone wrong (24, 25, 26).
 

General Data

Unless you are quite lean and have an extremely good diet, this is likely affecting you and your muscular gains to at least some extent. Inflammation precedes insulin sensitivity decreases, and the negative effects of such on anabolic and catabolic processes. And, alterations of the microbiota happen even more before that, with all of it happening before significant body fat accrual (27). In other words, it often happens before you have any reason to be aware of it. These changes are extremely rapid. They can occur in a matter of days. Your body simply isn’t built for modern, processed foods (28). They are an attack.

In a human colon simulator, the composition of the microbiota was significantly altered within 24 hours by conditions simulating a Western meal (29). In another human study, changes were noted over 4 days, with the earliest changes beginning on day one (30). High-fat feeding for just 3-4 days increased inflammation and reduced insulin sensitivity in mice (31, 32). On the human side, a high fat diet in young, healthy men resulted in an altered inflammatory response within a week. (33). Another study in healthy males found a 3-day hypercaloric and high-fat diet induced decreased insulin sensitivity (34).

Perhaps most frighteningly, in a study of a human microbiome transferred into mice, over multiple generations of a low fiber diet some species of bacteria actually became EXTINCT (35). The Western diet is now well into its 4th and 5th generations in the US.

And, all of these little attacks are cumulative, so they build up over time (36, 37).  Aging, itself, and the deterioration of muscle mass and everything else that comes with it, is basically a whole-body, low-grade inflammatory state (38). Likewise, even in the relatively young, chronic inflammation will epigenetically make your cells “old”, including muscle cells (39). This is known as “inflamm-aging” (40).  Basically, unless you are under 30, quite lean, and have a Paleo diet with fruits and veggies, not just low-moderate carbs, you likely have some degree of inflammation induced decreases in muscular insulin sensitivity and protein utilization, thus less than ideal anabolic and anti-catabolic signaling.

More powerful evidence of the profound effect of the microbiota on metabolic parameters and the phenotype come from studies on “fecal transfer”.  And, yes, that is exactly what it sounds like – transferring poop from one subject’s intestine to another’s.

In twins, transfer of an obese microbiota to lean mice was accompanied by an increase in bodyweight, fat mass, and a dysbiotic alteration of the microbiota to reflect that of the obese model (41). A similar transfer replicated the obese phenotype with increased weight gain, lipogenesis, adipogenesis, as well as inflammation and hyperglycemia in formerly lean, healthy subjects (42, 43).

On the other side of the coin, transferring the intestinal microbiota from lean donors increases insulin sensitivity in individuals with Metabolic Syndrome, as well as reversing obesity and gastrointestinal  issues (44). It also reduced markers of Metabolic Syndrome, inflammation, and oxidative stress in animals challenged with high-fructose diets (45).

Other studies have found corrections of high fat diet induced inflammatory status and insulin resistance, accompanied by altered microbiota composition to reflect that of the healthy donor (46, 47). In the most direct findings, transfer of the microbiota from a genetically obese lineage of pig into germ free mice resulted in higher body fat mass, higher slow-twitch fiber proportion, and decreased muscle fiber size and fast-twitch fiber percentage, with the gut microbiota composition of colonized mice sharing high similarity with their donor pigs (48). The microbiome is basically trillions of little biological nanobots going to work on you, for good or bad.

Obviously, while it highlights the science, doing a fecal transfer is not terribly practical, appetizing, or readily available -- unless maybe you work for Bill Phillips.

Fortunately, we can fix all of this with less intrusive methods.

 

Part 2 on Tuesday, June 19th

Par Deus

Bacteria

Bifidobacteria and Lactobacillus are by far the most common and well-known probiotic bacteria.  They are commercially available and quite affordable. We can also readily manipulate levels of the good bacteria that are not commercially available such as Bacteroides species, Roseburia species, Akkermansia muciniphilia, and Facealbacterium prausnitzii via diet and supplementation of ingredients that ARE available. More on that later.

Bifidobacteria

Bifidobacteria are significantly lower in type-II diabetics and have been consistently shown to combat the cycle of LPS inflammation, leaky gut, and insulin resistance (49, 50, 51).  They are reinforcing on intestinal epithelial cells and mucosa, improving the physical barrier of the intestine, preventing translocation of pathogenic bacteria and LPS from intestine to body tissue (52, 53).  They limit pro-inflammatory signals and increase tight junction proteins supporting mucosal recovery, ultimately restoring normal intestinal permeability and preserving gut barrier function in the face of inflammation (54, 55).

Bifidobacteria administration quells general colonic inflammation, particularly from LPS and its downstream signal, TNF-alpha (56, 57, 58).  In reducing LPS levels, inflammation induced insulin resistance is reversed in the face of a high-fat diet (59, 60, 61).  They shift the composition of the microbiota toward that of a lean phenotype, reducing inflammatory activity and insulin resistance while lowering body fat (62, 63).

Bifidobacteria are also extremely important for cross-feeding. This is where one bacterial strain produces metabolites that other species and strains can use for fuel (64, 65).  This is particularly important for the bacteria that are not commercially available, which we will discuss in detail in a bit.  Bifidobacteria produce acetate and oligosaccharides which are then consumed by these acetate utilizing, butyrate and propionate producing bacteria (66).

Faecalibacterium prausnitzii is almost fully dependent on acetate.  It converts it to butyrate with 85% efficiency, and its growth is enhanced by co-culture with Bifidobacteria (67, 68).  Roseburia is also an acetate user, and it is generally required for its growth (69, 70).  Combined with bifidobacteria, Roseburia was able to grow in pure complex carbohydrate cultures, which it cannot metabolize on its own, owing to cross-feeding (71). Cross-feeding with Bifidobacterium also modulates the positive effects of prebiotic oligosaccharides on growth of Roseburia and F. prausnitzii by making acetate available (72).  And, butyrate production increases mucins, which are fed on by Bacteroides and Akkermansia, two more great, but commercially unavailable bacteria.

 

Lactobacillus

Lactobacillus consistently increases tight junction protein formation and improves intestinal barrier function, ultimately inhibiting systemic inflammation from LPS and its downstream pathways (73, 74, 75, 76, 77, 78). They also increase the levels of butyrate and the other short-chain fatty acids (79, 80).  Lactobacillus raises levels of Bacteroides, a propionate producer, and another one of the types of great bacteria that we cannot get commercially (81).  They promote favorable intestine morphology, improving parameters such as villus height, crypt depth, mucin expression, and the quantity of goblet cells, all things favoring digestive function and efficiency (82).

Lactobacillus decrease LPS, systemically, as well as downstream inflammatory markers including TNF-alpha , IL-6, and COX-2, (83, 84, 85, 86). Relatedly, they also reduce expression of TLR-4, which is basically the “LPS receptor” (87, 88).  They have also shown improvements of inflammatory colitis, which is essentially an extreme version of a “leaky gut” (89, 90).  The reduction in inflammatory responses downstream of the LPS signaling pathway is a consistent finding in studies with Lactobacillus, including decreased adipose tissue inflammation, further evidence of preventing LPS actions outside of the gut (91, 92, 93, 94).

In combating these inflammatory pathways, Lactobacillus lower oxidative stress levels, ultimately improving insulin sensitivity (95, 96, 97). They also increase the insulin sensitizing peptide adiponectin (98, 99, 100).  Finally, they specifically improve insulin sensitivity against Western-style, obesity promoting diets (101, 102, 103).

In even more direct findings on probiotics and body composition improvements, Lactobacillus have been found to protect the testes from oxidative stress, increasing testosterone levels (104, 105). In fact, testosterone levels were 4-8 times higher in aging mice (a model of chronic, low-level inflammation), given Lactobacillus (106).

They have been found to increases growth hormone levels and reduce the expression of atrophy inducing genes (107, 108). They increased weight with the same body fat, meaning more lean mass (109).  Lactobacillus dose-dependently increased grip strength, muscle fiber number, and endurance swimming while decreasing muscle tissue breakdown (110). They inhibited increased levels of cortisol in response to stress (111). Finally, Lactobacillus feeding stimulates IGF-1 and decreases myostatin (112, 113, 114).

Bacillus, another genus of commercial probiotic, increased goblet cell number, villus length, and mucin synthesis in the intestine (115). This would be expected to improve intestinal mucosal cell proliferation and, ultimately, efficiency of nutrient digestion and absorption (116). And, indeed, improved growth performance and enhanced protein utilization has been found with Bacillus (117).

 

Probiotic Combinations

You may have noticed that almost no probiotic formulas contain just a single species of bacteria, nowadays. And, if you did not, I will just say that it is for a good reason. They work better in combination.

First of all, microbial diversity seems to be good, in and of, itself. Essentially, a diverse gut is a healthy gut (118). Obesity has been associated with a lack of microbial diversity and, as you might expect, lean subjects have greater microbial diversity in the gut (119, 120, 121). Insulin sensitivity is also improved along with diversity increases (122).  Finally, in the interesting but not terribly shocking category, exercise increases microbial diversity (123, 124).

Combinations also work to specifically create an environment where probiotic bacteria can thrive, thus enhancing their ultimate performance (125). Compared to individual strains alone, combinations greatly increase adhesion to intestinal mucus, which is necessary for most survival, growth, and activity (126, 127).  Conversely, they inhibit adhesion and growth of pathogenic bacteria better when in combination (128, 129).

However, you do not want to just throw every single commercially available species and strain into a product as so many companies do. They need to be rationally combined. If not, they can interfere with each other’s actions and compete for space and resources (130, 131, 132).

But, perhaps the most interesting benefit of probiotic combinations is through the afore-mentioned cross-feeding of the commercially unavailable bacteria we are about to discuss, right now.

 

The Best Probiotics That Money Can’t Buy

Unfortunately, several species of bacteria with some of the very best data are not available commercially, due to regulatory issues and well as practical challenges such as stability and viability of the bacteria themselves. Several groups are working on these, but it will happen later rather than sooner, at best.

Fortunately, there are a myriad of ways to specifically target and increase these strains using methods that ARE available.  So, let’s take a look at these novel wonder-bacteria.

 

Bacteroides Species

Bacteroides are butyrate and propionate producing. Levels were 6-fold higher in lean vs. obese subjects, as well as being reduced in obese patients, in general, compared to control populations (133, 134, 135, 136). Levels in Type-2 diabetics were only half that of subjects with normal glucose tolerance (137).

Among various species in the Bacteroides genus, B. uniformis reduced bodyweight gain, triglycerides, and adipocyte volume while improving insulin and leptin sensitivity.  It also lowered LPS and other inflammatory signals (138).  B. fragilis releases a symbiotic immunomodulatory anti-inflammatory factor called Polysacharride A – kind of an anti-LPS (139, 140). This has been shown not just to prevent but to cure experimental colitis, an extreme version of a leaky, inflammatory gut (141). It has also been shown to prevent demyelination of neurons in the central nervous system, indicative of protection against inflammation well outside of the gut (142).

 

 

Faecalibacterium prausnitzii

Faecalibacterium prausnitzii are butyrate producing and considered a physiological sensor and marker of human health (143). It does not get much more important than that. It is lower in the obese and type-2 diabetics (144, 145, 146). Conversely, it is higher in normal glucose tolerance vs. pre-diabetic subjects (147).

Faecalibacterium prausnitzii is also negatively correlated with inflammatory markers and sharply decreased in inflammatory bowel diseases (148, 149). It is greatly reduced in ulcerative colitis and less abundant in Crohn’s disease (150, 151). As would be expected from the above, it improves intestinal barrier function (152).

 

Akkermansia muciniphilia

Akkermansia muciniphilia is mucin degrading, meaning it feeds on mucins (153). It is also decreased in obesity and type-2 diabetes. Its administration reduced fat mass, adipose tissue inflammation, and enhances insulin sensitivity. Along with this, improved gut barrier function and increased intestinal endocannabinoid levels were seen (154).

This species is also inversely related to fasting glucose, waist-to-hip ratio, subcutaneous adipocyte diameter, plasma triglyceride levels, visceral adipose tissue mass, and insulin resistance (155). Along with enhanced glucose tolerance, it reduced adipose tissue inflammation (156). Akkermansia levels are higher in normal glucose tolerance vs. pre-diabetic subjects (157). It decreases inflammatory cytokine production and protected intestinal barrier function in experimental colitis (158). Finally, its levels are reduced in ulcerative colitis (159).

 

Roseburia Species

Roseburia species are butyrate producing (160). An increase in this species is associated with decreased body weight, fat mass, insulin sensitivity, and triglycerides -- independent of calorie intake (161). Increased Roseburia correlated with reduced body weight, improved profile of lipid and obesity related gene expression, along with a normalized inflammatory status (162). It is also lower in type-2 diabetes (163). Levels are increased by a Mediterranean diet, as is insulin sensitivity (164). Finally, its levels display an inverse correlation with disease activity in ulcerative colitis (165).

High protein/low carbohydrate diets, which are so effective and popular, reduce Roseburia and SCFA levels, making pro- and prebiotics particularly useful with these (166, 167).

 

 

Prebiotics

Prebiotics are the food for our probiotic bacteria, and they are also the substrates that get transformed into super beneficial short-chain fatty acids like butyrate, so we will look at some data on those as well. Prebiotics have come a long way since oat bran and psyllium husks. Beginning with inulin, a huge array of oligosaccharide and glycan type compounds have been found to be fermented and fed on by intestinal bacteria. These newer prebiotics tend to be basically tasteless and dissolve effortlessly, which is quite handy.

With the importance of microbial diversity for optimal gut and body health, we want a number of different prebiotics for them to feed on. Likewise, we want to choose the ones that best increase the bacteria we want to increase, rather than just randomly feeding all of them. Let’s briefly look at some data on the positive effects various prebiotics.

 

Increased Good Bacteria and SCFAs

Prebiotics, by definition, increase beneficial bacteria, with data being most focused on Lactobacillus and Bifidobacterium, as they were the earliest studied and most common. Bifidogenic potential was the primary measurement for prebiotic activity until about 10 years ago.

Lactobacilli are promoted by a wide range of fibers and oligosaccharides (168, 169, 170). They can also ferment sugars, such a sucrose, fructose, and glucose (171). They are stimulated even by flour (172). So, one doesn’t have to put that much effort into getting them to grow. As you would expect from their growth being how prebiotics were defined, Bifidobacteria also grow quite well on a wide range of commercial prebiotics, with 5-10 fold increases in some subjects being noted (173, 174, 175, 176).

The much more interesting prebiotic data is the increases found in levels of the aforementioned commercially unavailable butyrate and propionate producing bacteria via the aforementioned cross-feeding. As we have mentioned, and as you will really see later, butyrate production is probably the single most important way that probiotics and prebiotics ultimately work their magic.

And, indeed, prebiotics have been found to not only raise Bifidobacterium counts, but do so concomitant with increased Akkermansia and F. prausnitzii (177, 178, 179).  They also promote increases in Bacteroides  (180, 181, 182, 183).  Other studies have found elevated Roseburia, F. prausnitzii, and Bacteroides together with greater butyrate levels, with total SCFA increases as high as 2-3 fold (184, 185, 186, 187).  Other prebiotic studies have shown increased propionate production along with Roseburia levels (188, 189).  They have also been found to increase butyrate and propionate to go along  with raised bifidobacteria and acetate levels  – again, suggestive of cross-feeding to butyrate and propionate producing bacteria (190, 191, 192, 193).

 

Mucins

Prebiotics administration has shown 2-4 fold mucin elevations, which would create a positive environment for mucin feeders such as Akkermansia, Roseburia, and Bacteroides (194). Another found prebiotic augmentation of mucin production of 6-fold, leading to large elevations in Akkermansia, Roseburia, and propionate (195).  Akkermansia is the most well characterized mucin consumer (196, 197). Verrucomicrobia, of which Akkermansia is the primary genus, was increased from .03% to 5.25% by mucin (198). That is a 175-fold increase, if you are counting.  Multiple species of Bacteroides are also mucin degrading specialist, as well (198, 199, 200, 201, 202).  A species of Roseburia, R. intestinalis also colonizes the mucosal layer and feeds on mucins (203).

With these bacteria colonizing the mucus and being close to the epithelium, particularly with the butyrate producers, bioavailability for epithelial cell regeneration and barrier function is enhanced, so they are especially important and effective.

 

Gut Permeability and Inflammation

Prebiotics augment intestinal protein junction assembly, decreasing intestinal permeability and preventing loss of gut barrier function (204).  Oligosaccharides also directly displayed a microbiota independent increase in tight junction assembly and improved barrier function (205).  Prebiotics decrease LPS and increase epithelial cell proliferation (206, 207).  They decrease downstream inflammatory markers triggered by LPS (208, 209). Increases in tight junction proteins and improved barrier function inhibited systemic inflammation in adipose tissue (210). Finally, prebiotics protect against stress induced LPS inflammation and activity (211, 212).  

 

Insulin Sensitivity and Protein Sparing

Along with decreased LPS and inflammation, prebiotics reduced plasma glucose (213). They improved glucose tolerance by reducing oxidative stress and low-grade inflammation (214). Prebiotic inhibition of LPS target Toll-like Receptor 4 (TLR4), and downstream inflammatory affecter TNF-alpha, improved insulin sensitivity (215, 216). They also improve post-prandial blood glucose and insulin levels as well as improving glucose uptake in insulin resistant cells (217, 218, 219).

In addition, by supplying SCFAs, the preferred fuel of the enterocyte, prebiotics reduce protein fermentation in the gut (220, 221, 222). This spares amino acids for more useful purposes like building muscle as well as preventing formation of toxic breakdown products (223). We will talk a good bit more about protein sparing, later.

 

 

Polyphenols as Prebiotics

Less well known than with typical prebiotics, polyphenols are also fermented by the gut microbiota. Polyphenols are generally prebiotic for good bacteria (Bifidobacterium, Akkermansia, Bacteroides, and Roseburia), and antibacterial for less favorable and pathogenic ones (224, 225, 226). Fruit/berry based polyphenols seem to be particularly favorable toward Bacteroides and Akkermansia growth compared to other polyphenol sources (227, 228, 229). Lactobacillus lack glycan degrading enzymes, thus do not grow on them particularly well compared to the others, so they are especially targeted to butyrate producers (230).

Fermentation of herbs and such containing polyphenols also transforms them, resulting in much higher concentrations of active compounds compared to unfermented (231). This same fermentation is done in the body, but it is highly dependent upon the microbial make-up of the individual’s gut, so it can vary widely from person to person (232, 233). As an example, a fermented herb preparation inhibited LPS mediated inflammatory damage, while the unfermented one was ineffective (234, 235). The same was true for insulin sensitivity (236, 237). So, not only do polyphenols increase good bacteria, but the good bacteria make the polyphenols work better. The prebiotic effect plus the transformation into more active compounds is why polyphenols so consistently show a myriad of great benefits despite supposedly being so poorly bioavailable.

 

Mechanisms of Action

With the background information and general overview out of the way, we will now get deeper into the mechanisms of how this affects muscle mass. There are a lot of interacting pathways and systems here, though much of it comes down to inflammation and butyrate, both inside of the gut and outside. First, we will talk about fixing the gut, itself, both the inflammatory signaling (LPS et al) as well as the intestinal barrier that prevents them from escaping.  Within the gut, we will also discuss protein sparing and absorption/utilization improvements from a healthy microbiota and gut. Then, we will talk about anabolic and anti-catabolic pathways outside the gut.

 

Part 3 on Thursday, June 21st

Par Deus

Inside the Gut

Short Chain Fatty Acids (SCFAs)

Along with outcompeting the LPS producing bacteria that trigger inflammation, one of the primary and most basic ways by which probiotic bacteria work their magic is by fermenting prebiotics to produce SCFAs (primarily acetate, butyrate, and propionate). So, we are going to talk a bit about those, now.

SCFAs primarily work through three mechanisms:  

1) Decreasing inflammation and permeability in the gut 
2) Activation of free fatty acid receptors, FFAR2 and FFAR3, in the gut
3) Inhibition of Histone De-Acetylase (HDAC) in skeletal muscle

We will talk about the first one, now, as it occurs wholly inside the gut (though, it ultimately prevents bad things outside of it). The second one begins in the gut, but mostly does its work outside, so we will cover it a bit here, then get deeper into it and number 3, later, in the section on all of the stuff outside of the gut.

I should probably further emphasize that the Gut-Microbiota-Muscle axis is not straight-forward linear and compartmentalized. There is inside and out, as well as back and forth, communication. There are also overlapping functions and pathways.  LPS/inflammation increases gut barrier breakdown, thus its own leakage into the body, and SCFAs/butyrate directly reduce inflammation in addition to reducing LPS/inflammatory leakage by strengthening barrier function… in addition to directly attacking problems caused by inflammation related pathways in skeletal muscle. 

Anyway, back to SCFAs.  Both acetate and propionate reduce inflammatory pathways of lipopolysaccharide like TNF-alpha and NF-kB (238, 239). However, butyrate is significantly more potent (240, 241). Butyrate also plays the most critical role in maintaining colonic health via modulation of intestinal cell growth and differentiation (242).  It is the primary fuel source for enterocytes, being responsible for up to about 70% of their energy use (243, 244). Butyrate also dose-dependently reduces LPS impairment of tight junction permeability and intestinal barrier integrity.

We’ll get into this more in muscle, but one mechanism by which it increases tight junction proteins is by preventing LPS induced inhibition of the anabolic Akt/mTOR mediated protein synthetic pathway (245).

Butyrate also dose-dependently increases mucin protein contents of the mucosal layer of the intestine (246). The mucosal layer is the first line of defense against noxious substances and pathogens (247, 248). In addition to being food for some of the best bacteria, mucin improves adherence of probiotics to the mucosal layer of the intestine, thus mucins are perhaps the most important aspects of their viability and colonization (249, 250).

Butyrate also improves intestinal barrier function via activation of AMPK (251). Sodium butyrate has been specifically found to be an AMPK agonist (252). And, butyrate increase tight junction assembly, thus improving barrier function, specifically through AMPK (253, 254). This seems like as good of a place as any to add a bit more about AMPK, really quickly, as it is one of the major targets in all of this inside the gut.

 

 

AMPK

AMPK is a primary signaler in the maintenance of tight junction integrity and intestinal barrier function. It is one of the most important pathways in preventing the “leaky gut” we have spoken of earlier in regard to LPS and other inflammatory and infectious molecules escaping into the body to wreak havoc (255, 256). As we’ve mentioned, modern food processing and the Western diet is a particularly egregious malefactor in all of this (257).

In addition to its involvement in barrier function, AMPK activation is extremely positive for the great bacteria that we can’t get commercially.

Metformin increased Akkermansia 18-fold through AMPK activation. Also, against a high-fat diet, it restored Bacteroides levels and normalized microbiota constituent ratios to that of lean subjects (258, 259, 260). It inhibited LPS induced inflammation and gut permeability increases, while improving glucose uptake and insulin sensitivity (259). Akkermansia increases are likely at least partially due to greatly elevated production of its favorite food, mucin, which is stimulated by AMPK. Its activation also reduces insulin resistance and adipose tissue inflammation in a high-fat diet (260).

 

Free Fatty Acid Receptors

Activation of FFAR2 by SCFAs suppresses insulin signaling in adipocytes, which inhibits fat accumulation in adipose tissue and promotes the metabolism of lipids and glucose in other tissues such as muscle (S2). Propionate and butyrate also both activate intestinal gluconeogenesis.  Butyrate does so through AMPK, while propionate works through a gut-brain neural circuit involving FFAR3 (261). This glucose then triggers a signal to the brain which normalizes whole body glucose homeostasis (262).

In a fasting state, as much as 62% of infused propionate is converted to glucose in the intestine, accounting for 69% of total glucose production (263). This is especially applicable to lower carb diets. Basically, it makes your brain think you are plenty fed with carbs/glucose. When the brain thinks the body is well-fed, energy intensive protein synthesis is supported. It also reduces peripheral gluconeogenesis, sparing amino acids for use in muscle tissue, while improving insulin sensitivity via reduced output of glucose from the liver (262).  Short chain fatty acids, especially butyrate, are also direct precursors for ketone formation, obviously handy for ketogenic diets (264, 265).

Activation of FFAR2/3 by SCFAs also stimulates the release of the incretin hormone, glucagon-like peptide-1 (GLP-1), enhancing anabolic and anti-catabolic insulin signaling pathways in muscle (266, 267). We will discuss this more, later. 

 

 

 

Protein Absorption and Efficiency

The earliest studies on pro- and prebiotics were done to replace antibiotics for increasing digestion/feed efficiency in livestock. They result in the production of more meat (i.e. muscle mass), in general, and more meat per unit of food given. So, let’s take a look at the mechanisms on how this works, and how it will work for you.

As we have briefly discussed, probiotics and prebiotics, via short chain fatty acids, increase the proliferation of intestinal epithelial cells, as well as increasing villus height and crypt depth, expanding total surface area for nutrient absorption. Likewise, increases in the quantity and quality of goblet cells increases mucin, helping to maintain optimal health and function of the intestine. Ultimately, this increases total nutrient digestibility in the intestinal tract (268).

SCFAs, and other organic acids such as lactic acid (produced by lactobacillus, thus the name), reduce pH, increasing bioavailability of protein (269). They also enhance the release of digestive proteases, increasing absorption of small peptides and amino acids by enterocytes. (270).  Only 80–90% of protein is actually digested and made available as amino acids in the small intestine, and we obviously want it on the high end (271). This inefficiency results in the entry of a good chunk of undigested protein into the large intestine, which we will discuss more in a moment.

Once proteins have been digested and absorbed, we get to yet another area where probiotics and prebiotics, via SCFA acids, are useful – namely, in protein sparing. The gut has one of the highest rates of cellular and protein turnover of any tissue in the body. If cellular needs are not met by diet and supplementation, skeletal muscle proteolysis results, with amino acids being funneled from the periphery to the gut (272The liver and the gut account for 20 to 35% of whole-body protein turnover and energy expenditure, and your big brain gets a crack at those before your muscles, as well (273). Up to 50% of dietary amino acids are oxidized in first pass in the gut, with anabolic BCAAs being amongst the most favored (274).

Some of this is inevitable, as these amino acids go toward protein structures in the intestines, such as digestive enzymes, mucins, and the physical makeup of the intestinal cells, themselves. But, they are also heavily used for fuel if their favorite food, SCFAs (especially butyrate), are not available (275, 276) . Dietary amino acids are preferred over glucose as intestinal metabolic fuel, and the systemic availability of dietary amino acids is ultimately one of the biggest determinants of the growth rate of lean body tissues such as muscle (277).

And, indeed, both probiotics and prebiotics have been shown to enhance the entry of dietary amino acids into systemic circulation. While the increase in digestion and absorption is modest at around 5%, plasma levels are increased by as much as 30% by the protein sparing effect of SCFAs (278, 279). Given the figure of 50% of amino acids being oxidized in first pass in non-pre/probiotic subjects, for a 200lb person on the standard 1g/lb of bodyweight protein intake, we are talking about the equivalent of an extra 30g of protein per day making it to systemic circulation to be available to your muscles!

And, there is more. As we mentioned above, 10-20% of protein is unabsorbed in the small intestine and moves on to the large intestine (with plant proteins being more poorly absorbed than animal ones), which leads us to nitrogen/amino acid recycling by the gut microbiota  (280, 281).  This recycling is not only of the undigested protein, but also amino acids which have entered the ammonia/urea cycle, generally after having been oxidized for fuel, particularly for the metabolic needs of skeletal muscle (282, 283).  Glutamine and the BCAAs are favorites, here (284 , 285).

Nitrogen/amino acid salvage and recycling by the gut back into the body amino acid pool is quite substantial, being equal to approximately one-half of total dietary intake (286).  The gut microbiota’s recycling of ammonia and urea back into amino acids, especially from glutamine, BCAAs, and EAAs has been found to be on the order of 300+mg/kg/day (287, 288). For our 200lb man, this would be another 27 grams of protein per day reclaimed by the healthy and efficient gut to go toward muscle building.  Other studies have found in the 15-30g/day range, but this was with smaller people and smaller intakes than bodybuilding and fitness types (289).

Lactobacillus have the best research in this regard, though it is an area absolutely begging for more research (290, 291). This nitrogen recycling seems to be of particular importance in the overnight fasting period when food/protein is not being consumed (292). Basically, it helps you stay anabolic 24-7.

All in all, this is massive!! Pun intended. Between greater peripheral delivery of amino acids and nitrogen/AA recycling, we are talking as much as 60g of protein a day, for a 200lb person consuming the typical 1g/lb of bodyweight. This is 2 meals worth of extra protein available to promote muscle growth.

Finally, data in animals have shown direct correlations of microbial make-up with superior growth and feed efficiency.  There is no such data on humans, as they are not grown for food, yet. Families and genera of butyrate producing genera and species including the aforementioned Bacteroides, Roseburia, and Faecalibacterium prausnitzii were all highly represented on the superior growth and feed efficiency side, as you might expect from what we have learned so far (293, 294, 295, 296, 297).

 

Part 4 on Tuesday, June 26th

Par Deus

Butyrate

Way back when we talked about SCFAs positive effects on inflammation and permeability of the gut, we said we would get back to its actions outside of the gut, and here we are.

In addition to butyrate’s peripheral anti-inflammatory effects via keeping LPS contained inside the gut, it also directly inhibits TNF-alpha and the inflammatory response to LPS (460, 461). Elimination of the gut microbiome (thus SCFA production) with antibiotics decreases IGF-1, which is restored with SCFA administration (462). Dietary administration of fellow SCFA, propionate, up-regulated the expression of GH, IGF1 and down-regulated myostatin (463). Butyrate improves insulin-resistance in skeletal muscle, along with its induction of Akt (464, 465). And, it increased muscle fiber cross-sectional area along with improving glucose metabolism in aged subjects (466).

Let’s take a closer look at some of the several mechanisms through which it works.

 

 

GLP-1

Activation of Free Fatty Acid Receptors (FFAR2 & FFAR3) in the gut by butyrate stimulates the release glucagon-like peptide-1 (GLP-1) which then enters the blood stream (467, 468). Much like insulin, GLP-1 activates the anabolic Akt/mTOR pathway (469, 470, 471, 472). It also promotes dilation of muscle microvascular (473, 474). This enhances nutrient uptake in the muscle cell and is dependent on Akt/mTOR upregulation of nitric oxide production (475, 476). Its effects in this regard were both independent of, and additive to, insulin (477, 478). Recall also the positive effects of NO on satellite cell activation, muscle regeneration, and repair discussed earlier.  In addition to skeletal muscle microvasculature, GLP-1 also significantly increases vasodilation and blood flow in large vessels like the brachial and radial arteries and femoral vein (479, 480). Treatment with GLP-1 improves exercise capacity and mitochondrial function, as well as skeletal muscle mass and strength (481, 482).

 

HDAC

While GLP-1’s positive effects in muscle begin with butyrate activity in the gut, butyrate, itself, is also taken up from the gut and enters the systemic circulation producing direct actions that support muscle growth. One of the primary mechanisms is its function as a Histone De-Acetylase (HDAC) inhibitor. This is epigenetic stuff. To put it simply, epigenetics involves (heritable) changes in gene expression without change to the DNA sequence, itself.  It basically changes how the DNA is interpreted, similar to translating a foreign language book. The original book (DNA) stays the same, but a different author (epigenetics) is going to translate it differently. Negative epigenetic changes are a huge part of the build-up of dysfunction with aging in everything from metabolism, to muscle mass, to the brain, with inflammation being a particular culprit (483, 484, 485).

Propionate and acetate also augment histone acetylation, but the bulk of the data is on butyrate (486, 487). HDAC inhibition amplifies Akt/mTOR signaling, as well as preventing induction of atrophy genes (488). Increased histone acetylation blocks downstream activity of glucocorticoids, including FoxO (489, 490). Inhibition of HDAC during muscle disuse significantly attenuated both disuse muscle fiber atrophy and contractile dysfunction via FoxO (491). The effects of acetylation on FoxO, and other targets such as mTOR, appear to be quite similar to phosphorylation with Akt, though data is still new and scarce (492, 493). But, that will definitely be something to keep an eye on. Finally, inhibition of HDAC activity significantly enhanced androgen receptor mediated protein synthesis (494).

You have likely heard the term “muscle memory”, but you may not know that skeletal muscle stem cells do indeed have a memory that is created epigenetically. Stem cells from muscles of young, aged, physically active, and diabetic subjects carry on their altered metabolic characteristics when isolated and cultured (495). In other words, the bad (or good) epigenetic build-up semi-permanently alters them to such an extent that it is maintained when they are taken out of subjects and grown in a lab. HDAC inhibitors promote muscle regeneration through epigenetic regulation of both satellite stem cells and differentiated muscle cells (496). Via upregulation of follistatin (basically the anti-myostatin), HDAC inhibition also blocks the adipogenic potential of stem cells, pushing them toward the formation of muscle cells rather than adipocytes (497, 498). The importance of HDAC inhibition reversing long-term damage from inflammation and aging basically cannot be understated.

 

Heat Shock Proteins

Butyrate also induces Heat Shock Proteins (499, 500). Heat Shock Proteins (HSPs) are called such because they were initially discovered in cells subjected to hyperthermia, but they function as a protective and subsequent regenerative and repair mechanism against all kinds of cellular stressors (501). Other HDAC inhibitors induce HSPs as well, suggesting this as butyrate’s mechanism in this regard (502, 503). Induction of HSPs protects intestinal epithelial tight junction barriers, decreasing LPS leakage, and reducing the inflammatory response (504). Increased HSP levels also reduce TLR-4, and the subsequent production of TNF-alpha and NF-κB (505).

HSPs strongly blunt increases of cortisol to stressors (506, 507). The synthetic glucocorticoid dexamethasone decreased myotube diameter and protein content, and heat stress prevented this along with recovering Akt signaling (508). HSPs directly bind to and protect Akt, and HSP induction defends against glucocorticoid induction of catabolic FoxO via Akt (509, 510). Silencing of HSP genes decreases Akt and myotube diameter while increasing FoxO, and treatment with an HSP inducer reverses this (511).

Exercise also increases HSPs, along with Akt and downstream anabolic signaling (512). Aged subjects have a blunted HSP response to exercise, along with decreased muscle repair, which is reversed with HSP overexpression (513). HSPs’ positive effects on muscle repair and regeneration seems to be to some extent from protection of satellite cells (514). Androgens and Clenbuterol also strongly upregulate HSP expression, with this likely being particularly important for Clen’s anabolic effects (515, 516, 517, 518).

 

Angiotensin II

Last but not least, butyrate protects against the negative effects of Angiotensin II (Ang II). Like butyrate, itself, Ang II produces effects both inside and outside the gut. But, its effects are negative. It is kind of a wingman of LPS in that regard. It also displays bi-directional communication between the gut and brain in hypertension, much like cortisol with stress (519). In addition to its effects on blood pressure, it is strongly induced by LPS and mediates some of the inflammatory response to it (520, 521, 522). LPS induction of Ang II may be through TNF-alpha, but it is also a direct ligand for TLR-4, just as LPS is (533, 534, 535). It is a really interesting molecule, and Renin-Angiotensin a really interesting system, as it ties high blood pressure in with inflammation, insulin resistance, and the cardiovascular system in Metabolic Syndrome. You will likely hear a lot more about it over the next 5-10 years, but parts of the understanding are still relatively in their infancy, so we are going to keep it fairly brief.

There is a decrease in microbial richness and diversity in hypertension and with Ang II infusion, as well as decreases in acetate and butyrate producing bacteria (536). This is accompanied by increased intestinal permeability and decreased tight junction proteins (537). Butyrate administration elevated Akkermansia levels, with significant positive effects on inflammation and ROS, and led to improvement of hypertension (538).

Butyrate significant reduces blood pressure, as well as TNF-alpha, in response to Ang II infusion (539, 540).  Data on other HDAC inhibitors indicate that this may be a primary mechanism for butyrate’s antagonism of Ang II’s actions. HDAC inhibitors prevented inflammation and ROS from Angiotensin II (541). They also protected against Ang II induced hypertension and vasoconstriction (542). And, again, the semi-permanent nature of epigenetics makes this especially important.

Outside of the gut, Ang II basically does all of the same bad stuff as LPS because, as we mentioned, it mediates some of LPS signaling, plus shares signaling downstream from TLR-4. It shares the same link between inflammation and insulin resistance, and ACE inhibitors or Ang II receptor blockade reverses these (543, 544, 545). It reduces protein synthesis and increases catabolism, leading to muscle atrophy (546). Ang II inhibits the insulin and IGF-1 signaling pathways via Akt inhibition (547, 548). It impairs insulin stimulated nitric oxide and vasodilation (549). This is, once again, via the Akt/mTOR pathway (550, 551). As a result, Ang II also reduces muscle regeneration and satellite cell differentiation into muscle fibers (552). Finally, it increases the glucorticoid/myostatin catabolic pathways (553, 554).

 

Will it work for me and what to expect

With the science out of the way, the obvious question is “How much do you need and/or should you want pro- and prebiotics to fix your gut and your body?”

Because the gut and systemic inflammation affect every system, and basically every cell, in your body, a good probiotic/prebiotic combo kind of stands apart from any other category of supplement. It is most analogous to going from a shitty diet to a good diet or from an okay diet to a perfect one.

We briefly mentioned hardgainers and the “skinny fat” phenotype, earlier. You definitely want to fix your gut. I would expect around an extra 10 lbs of muscle in a year, as your body starts living up to its genetic potential. For significantly fat people (and, even moreso, if showing signs of glucose intolerance), you absolutely need to fix your gut. I would expect very noticeable body composition changes in 1-3 months, and borderline miraculous ones in a year. This article has been about muscle mass, but as we alluded to with the mention of Metabolic Syndrome, the gut and inflammation play a huge role in health, as well.

Other general parameters pointing toward its usefulness for you are being over 30, the fatter you are, the worse your diet is, being in a calorie surplus, and having a (personal or family) history of inflammatory related conditions (heart disease, blood pressure, auto-immune, IBS/IBD, etc.).

On other hand, if you are 19, quite lean, on great diet with low-moderate carbs including fruits and veggies, with an iron stomach, and in a calorie deficit, it is not going to noticeably do a lot for you. It would be much more of a preventative measure to keep your cells young as you get older, to keep you still being awesome 5-10+ years from now. A big exception would be during bulking phases – and, the dirtier the bulk, the more it would help. Likewise, if you tend to go off the rails during holidays or vacations, it is damage control.

Gut and Muscle Graphic.png

Par Deus

Primer (tm) Ingredients

Primer™ Ingredients

As Primer™ is primarily a prebiotic, let’s start with those. Prebiotics have come a long way since oat bran and psyllium husks. Beginning with inulin, a huge array of oligosaccharide and glycan type compounds have been found to be fermented and fed on by intestinal bacteria. These newer prebiotics tend to be basically tasteless and dissolve effortlessly, which is quite handy.

With the importance of microbial diversity for optimal gut and body health, we want a number of different prebiotics for them to feed on. Likewise, we want to choose the ones that best increase the bacteria we want to increase, rather than just randomly feeding all of them.

 

Galacto-oligosaccharides (GOS)

GOS reduced fat mass, food intake by 14%, and elevated expression of pro-satiety peptides. Combining them with Calcium increased propionate formation (116). In addition to reductions in food intake, appetite, bodyweight, and inflammation are also decreased (117). GOS increase beneficial bacteria, particularly Bifidobacterium, with 5-10 fold increases in some subjects being noted (118-121). They also raise Bacteroides levels (121). They are long-acting, providing prebiotic effect throughout the entire length of the colon, while strongly inhibiting pathogenic bacteria (122). This owes to high resistance to conditions early in gut digestion (123).

GOS provide direct enhancement of intestinal barrier function through interaction with goblet cells, separate from SCFA or anti-inflammatory mediated mechanisms. They also showed a 2-4 fold mucin elevation, which would create a positive environment for mucin feeders such as Akkermansia and Bacteroides (124). They inhibited inflammatory responses, augmented protein junction assembly by 85%, and prevented loss of barrier function (125). GOS displayed a microbiota independent increase in tight junction assembly and improved barrier function (126). Finally, they mitigate LPS induced inflammation and protect against stress induced LPS activity (127, 128).

 

Arabinoxylan-oligosaccharides (AXOS)
AXOS are strongly Bifidogenic. They increase satiety inducing peptides, while decreasing weight gain, fat mass, and insulin resistance (129). They raise butyrate levels along with Bifidobacterium suggestive of subsequent cross-feeding to butyrate producing bacteria (130).  They also reduce protein fermentation in the gut (130, 131). This spares amino acids for more useful purposes as well as preventing toxic breakdown products.

AXOS are long-acting, with bacterial fermentation occurring throughout length of colon.  They significantly promote Bacteroides as well as Lactobacillus (132). They are even better than inulin at providing fermentation products to the distal portions of the colon (133). AXOS elevated Roseburia and butyrate levels, with total SCFA increases as high as 2-3 fold (134, 135).  Finally, they increase tight junction proteins, improve barrier function, and inhibit inflammation in adipose tissue (129).

 

Xylo-oligosaccharides (XOS)
XOS increased Bifidobacterium along with acetate and butyrate. Combining with inulin further augmented butyrate formation, as well as increasing propionate, suggesting cross-feeding to butyrate and propionate producing bacteria like Roseburia and Bacteroides (136, 137). And, XOS have indeed been found to promote both Roseburia and Bacteroides, as well as improving the Firmicutes:Bacteroides ratio (138, 139). Bacteroides possess special xylan degrading enzymes, making them a preferred fermenter of XOS (140). Elevated Bacteroides and butyrate from XOS protected against genotoxicity in a colonic simulator (141). They also decreased LPS and increased epithelial cell proliferation (137, 142).

 

Lactulose
Lactulose inhibits adipogenesis and fat accumulation, down-regulates adipogenic genes, and reduces caloric extraction efficiency, while increasing energy expenditure and lipolysis (143). It also improves post-prandial blood glucose and insulin levels (144, 145). Lactulose raises Bifidobacterium counts, particularly of the ideal cross-feeder B. adolescentis, as well as Akkermansia (146-148). Finally, it decreases intestinal permeability and proteolysis of amino acids in the gut (147, 149).

 

Inulin
Inulin improved glucose uptake in insulin resistant cells, and activated AMPK (150). It increases Bifidobacterium and butyrate, while reducing protein fermentation (151, 152). It has a prolonged Bifidogenic effect, with more distal fermentation and SCFA production vs. fructo-oligosaccharides, particularly of butyrate and propionate – again, suggestive of cross-feeding (153, 154). In fact, it was found to increase B. adolescentis more than 4-fold and F. Prausnitzii by 50% (155). It also increased Roseburia, while augmenting mucin production 6-fold, leading to large elevations in Akkermansia and propionate, distally (156).

 

Resistant Starch 3 (RS3)
Resistant Starch 3 is formed when starchy foods such as potatoes and rice are cooked and then cooled. This turns formerly digestible starches into resistant starches via a process called retrogradation.  RS3 is particularly, and somewhat uniquely, highly prebiotic for Ruminococcus bromii, with increases up to 4-fold (157-159). R. bromii has superior ability to degrade this resistant starch, which is the most prevalent fermentable carbohydrate in the average diet, making it a “keystone species” by acting as a cross-feeder for other species (160, 161).

It was also found to be readily consumed by Bacteroides, elevating faecal propionate, rather than butyrate as is often observed following resistant starch feeding of other types. This propionate formation reflects a gut community dominated by the Bacteroides, and it actually became the primary lineage in this study (162).

 

Amylopectin
Amylopectin was found to be superior to several other prebiotics for increasing butyrate, as well as butyrate producers F. prausnitzii and Roseburia (163). It also raises Bacteroides, with increases in Roseburia and Bacteroides being found to be proportional to the amylopectin content of barley and oats (164, 165).

 

Mucin
Mucin is the glycoprotein constituent of the mucus which lines the wall of the intestines and protects it. Several species of bacteria, including some of the really good ones, feed off of it. Akkermansia is the most well characterized mucin consumer (166, 167). Verrucomicrobia, of which Akkermansia is the primary genus, was increased from .03% to 5.25% by mucin, and in combination with inulin, Bacteroides was raised as well (168).

Bacteroides thetaiotamicron is a known mucin degrading specialist (169-171). Bacteroides fragillis consumes mucins as well (172, 173). Roseburia intestinalis also colonizes the mucosal layer and feeds on mucins (174).

With these bacteria colonizing the mucus and being close to the epithelium, particularly with the butyrate producers, bioavailability for epithelial cell regeneration and barrier function is enhanced.

 

Rhamnose
Rhamnose is a preferred sugar for the propanediol pathway of propionate production by Roseburia inulinivorans (175, 176). It is quite selectively metabolized to propionate (177, 178). It is much more selective for propionate formation than lactulose or glucose, which utilize different, less selective pathways, resulting in 4 times more propionate than with lactulose or glucose (179). Rhamnose was also found to decrease triglyceride synthesis and serum triglyceride levels, likely due to propionates effects on the SCFA receptors FFAR 2/3 (180).

 

Glutamine  
Glutamine is the primary substrate of rapidly diving cells, a category to which the epithelial cells of the digestive tract belong. It increases tight junction protein production (181). It does so by activating the mammalian target of rapamycin (mTOR) cell signaling in enterocytes.   It enhances intestinal growth, enterocyte proliferation and survival, and regulates intestinal barrier function in injury, infection, stress, inflammation, and other catabolic conditions (182). It is basically both the leucine (protein) and the glucose (carbohydrate), to go along with butyrate as the fat, for the fueling of survival, growth, and reproduction of the enterocyte. This makes it quite possibly the most important nutrient for intestinal barrier health and function.

Glutamine also reduces utilization of other amino acids (asparagine, aspartate, serine, lysine, leucine, valine, ornithine, and arginine) in the gut, preserving them for more useful things while reducing toxic metabolites (183, 184). It decreases intestinal permeability and enhances intestinal mucosa and barrier function (185). Glutamine improves intestinal barrier impairment and quells the LPS mediated inflammatory cascade (186). It also prevents mucosal injury and promotes recovery from LPS induced inflammatory damage, as well as downregulating TLR-4 expression (187, 188).

Inflammatory conditions increase the requirements for Glutamine to maintain the intestinal barrier (189). It has specifically been shown to protect the intestinal barrier against processed, Western diet style foods (190). AMPK mediates its enhancement of tight junction integrity and barrier preservation (191).

Conversion to glutamate and subsequent cellular uptake is a pivotal step in its protective effects (192). Monosodium Glutamate has been found to promote the colonization of F. prausnitzii and Roseburia (193). And, finally, L-glutamate enhances barrier function (194).

 

Calcium Phosphate
Increasing dietary Calcium produced a reduction in weight gain and fat pad mass of 26-39% with a 51% inhibition of adipocyte fatty acid synthase expression and activity, while stimulating lipolysis by 3 to 5-fold (195). In another study, an almost 50% increase in weight loss was found (196). A high-Calcium diet decreased fat gain by 55%, stimulated adipose tissue uncoupling protein (UCP2) and skeletal muscle UCP3 expression, increased thermogenesis and lipolysis,  while lowering fatty acid synthase expression and activity (197, 198). Calcium also elevated peptides GLP-1 and GLP-2, which increase satiety and decrease food intake (199, 200).

Calcium improves intestinal permeability, strengthens the mucosal barrier, reduces inflammation, and alleviates colitis (201). Prebiotics have actually been found to have negative effects on intestinal permeability and inflammation without Calcium Phosphate rather than the positive effects produced when it is present (202, 203). This protection is dependent on Phosphate, thus Calcium likely pulls it into the colon, improving luminal buffering capability (204). This is because SCFAs produced by prebiotic fermentation could lower pH too much in its absence.

Finally, Calcium is necessary for the Calcium/Calmodulin-dependent Protein Kinase Kinase 2 (CaMKK2) mediated AMPK signaling and barrier maintenance produced by Glutamine (205).

 

Multi-Berry Powder

Multi-berry powder has the power of berries!! A day’s worth of Primer™ is equal to ¼ cup of mixed berries. It has the polyphenols and fiber and such that berries have, but it is mostly in here because it gives it a nice, subtle berry flavor.

 

Conclusion

Primer™ takes the concept of prebiotic far beyond where anyone has previously taken it before. It starts by carefully and selectively feeding the most beneficial bacterial species, including novel probiotic species that you cannot attain, anywhere. It does so in a way that no other product comes even close to doing. It protects against dysfunction of the gut and microbiota to promote better health, better appetite control, better metabolism, and better fat loss. Finally, its supporting ingredients go to work on making your inflamed and leaky gut as good as new, leaving your body functioning in the optimal way it is intended to.

Primer™ is a gourmet meal for your microbiota and a happy-ending massage for your gut. It is a one of a kind product that fits in perfectly with and enhances any diet and exercise program, any supplement regimine, any lifestyle.

 

For references, see "View Full Science Write-Up" here: http://neobium.org/product-line/primer/

Par Deus

Outside of the Gut

If you are not already convinced of the benefits of pro- and prebiotics on muscle mass, it gets even more interesting outside of the gut. Getting back to Lipopolysaccharide (LPS) produced by a dysfunctional microbiota, once it has escaped the leaky gut, it sets off an anti-anabolic, pro-catabolic cascade of inflammation and reactive oxygen species (ROS), systemically (298). As we have mentioned, your body views LPS as an outside, pathogenic invasion via TLR-4. And, it literally is, as these bacteria are living, foreign invaders, thus immune defenses are activated. In such an attack, metabolically expensive skeletal muscle is not prioritized – quite the opposite, in fact. Amino acids and protein synthesis are prioritized for the immune response, at the expense of muscle tissue (299). The activity of insulin and other growth factors like IGF-1 are reduced, as are the levels and signaling of testosterone (300). At the same time, catabolic signals such as glucocorticoids, myostatin, NF-kB, and FoxO are upregulated, activating atrophy producing genes, which initiate the physical breakdown of proteins in muscle (301, 302). Obviously, that is all very bad for muscle size and body composition, so let’s take a look at these pathways in more detail.  

These will be kind of complicated, so some may better visualize and understand by also viewing the attached GRAPHIC

 

LPS and Anabolic Pathways

This is simplified, but the anti-anabolic signaling pathways of LPS basically proceed as follows:

LPS/TLR-4/TNF-a/ROS    DECREASES    Insulin&IGF-1 signaling/Akt/mTOR/Protein Synthesis
LPS/TLR-4/TNF-a/ROS    DECREASES    Amino Acid signaling/mTOR/Protein Synthesis
LPS/Cortisol/ROS/Myostatin    DECREASES    Akt/mTOR/Protein Synthesis

To reiterate at risk of being repetitive, the body views lipopolysaccharide (aka endotoxin) as an attack. LPS is a ligand of TLR-4, which literally exists to recognize molecular patterns of pathogens and toxins, then subsequently activate the inflammatory immune response in self-defense.  This is great, when your body needs to occasionally protect itself. It is very bad when it is constant and chronic because of diet and lifestyle.

LPS injections result in a 50% fall in protein synthesis in skeletal muscle, along with a 60-100% increase in muscle protein degradation (303).  Decreases in muscle protein content from LPS are equivalent to those with starvation (304). However, the rate of protein synthesis in the liver and plasma proteins, especially albumin and immunoglobulins, is greatly increased to match (305, 306). Basically, amino acids from diet and muscles are being commandeered for the battle (307). You are not going to get that high of LPS levels from dysbiosis of the microbiota, unless you have sepsis inducing food poisoning or the like, but it goes to show how powerful LPS is as an anti-anabolic, pro-catabolic trigger.

Obesity and type-2 diabetes are known to be associated with a chronic, low-grade inflammatory state, and this is accompanied by impairment of protein metabolism such as a lack of stimulation of protein synthesis by insulin and amino acids, as well as lower inhibition of proteolysis by the same (308, 309). The protein synthetic response to exercise is blunted in obesity compared to the lean as well (310). Disruption of the mTOR pathway, and its stimulation of protein synthesis, is also seen in these subjects (311) (312). However, chronic excessive energy intake and increased adiposity, without the metabolic disturbances, do not induce any changes in tissue protein synthesis rates, indicating the primacy of inflammatory pathways in these effects (313).

LPS diminishes the anabolic sensitivity to BCAAs and EAAs (314, 315). It also reduces IGF-I levels (316). Repeated LPS administration decreases muscle weight and muscle fiber cross sectional area (317).  In addition, LPS treatment reduces blood flow in muscle by as much as 70% (318). So, not only are your muscles less sensitive to various anabolic signals, less of those are even getting there.

Exercise reduces the LPS receptor, TLR-4, along with LPS induced inflammation (319). Via TLR-4, LPS massively increases TNF-alpha, the next step in the inflammatory equation – and, inhibition of TLR-4 reverses this (320, 321). TNF-alpha is highly involved in muscle wasting and kicks off the ROS cascade that invokes myostatin, NF-kB, and ceramides, which we will get into in a bit (322, 323, 324).

LPS induced TNF-alpha increases result in decreased body and skeletal muscle weight, and TNF-alpha shares with LPS an elevated rate of BCAA oxidation (325, 326). LPS promotes TNF-alpha mRNA transcription, with subsequent declines in IGF-1 (327, 328).  Direct TNF-alpha administration also lowers IGF-1, along with gastrocnemius weight (329, 330). TNF-alpha completely prevents insulin-mediated augmentation of capillary recruitment and blood-flow as well, inhibiting skeletal muscle glucose uptake by more than half (331).

Reducing TLR-4 and TNF-alpha increases the anabolic signal transducer “Akt”, which we will talk a bit about, now (332).

 

Akt

You possibly have never even heard of it, but Akt (also known as Protein Kinase B) is one of the most important molecular signals controlling skeletal muscle mass. It affects both anabolism, through mTOR regulation of protein synthesis, and catabolism, through FoxO regulation of protein degradation (333, 334). Anabolic growth factors such as insulin, IGF-1, and testosterone, as well as factors inhibiting anabolism such as TNF-alpha and myostatin, transmit their cellular signals on hypertrophy and atrophy by altering the activity of Akt and its phosphorylation of its numerous downstream substrates (335). Basically, Akt turns pro-muscle growth targets on, and anti-muscle growth targets off. Genetic activation of the Akt/mTOR pathway causes hypertrophy and prevents atrophy, whereas genetic silencing blocks hypertrophy in vivo (336).

Testosterone administration activates Akt signaling (337, 338). It upregulates the insulin-dependent Akt/mTOR signal transduction pathways in an androgen receptor dependent manner (339). Another androgen, Nandrolone, increases IGF-1 expression and its activation of Akt/mTor signaling while decreasing catabolic FoxO transcription (340).

Resistance training induced muscle hypertrophy increases Akt and phosphorylation of mTOR, with a parallel drop in FoxO, and detraining does the opposite on all parameters (341). Mechanical overload also induces muscle hypertrophy via activation of Akt and its downstream anabolic pathways (342).

LPS decreases Akt, along with its phosphorylation (thus, activation) of mTOR, as well as upregulating catabolic NF-kB and FoxO (343, 344). Increases in TLR-4 and TNF-alpha also downregulate Akt (345). Akt downregulation by TNF-alpha reduces skeletal muscle protein synthesis and increases protein degradation (346). Inflammatory cytokines like TNF-alpha decrease IGF-1’s activation of Akt, subsequently increasing expression of muscle atrophy-related genes (347).  Elevated reactive oxygen species (ROS) production by TNF-alpha inhibits Akt/mTOR pathways and upregulates atrophy promoting genes (348, 349).

And, as would be expected, ROS directly promote resistance to insulin signaling in skeletal muscle (350, 351). Amino acids and insulin fail to stimulate activation of Akt/mTOR mediated muscle protein synthesis in aged rats, a model of chronic, low-grade inflammation (352). Likewise, insulin resistant subject have reduced muscle Akt phosphorylation and negligible Akt mediated anabolic response to physiological insulin levels (353).

 

mTOR

You may be at least somewhat familiar with mTOR, as it is known to mediate increased protein synthesis from BCAAs such as leucine (354). LPS administration reduces phosphorylation of mTOR by Akt in skeletal muscle (355). Activation of TLR-4 by LPS inhibited the Akt/mTOR pathway, decreasing protein synthesis (356). Unlike insulin, amino acid action on mTOR induced protein synthesis is not modulated by Akt (357, 358). LPS also blocks leucine stimulated muscle protein synthesis, independently of Akt (359).

 

Nitric Oxide and Satellite Cells

The Akt/mTOR pathway also mediates the upregulation of nitric oxide (NO) by insulin (360, 361). Prolonged exposure to insulin (i.e. insulin resistance) desensitizes this pathway and blunts NO production (362). You probably are familiar with NO, as it is one of the more popular supplement categories, but we will still take a quick look at a bit of data. 

NO is a key messenger in myogenesis, particular in response to repairing muscle damage, such as from working out (363). It promotes muscle satellite cell activation and proliferation, as well as induction of myogenic genes such as myogenin and follistatin (364, 365). This satellite cell activation is dependent on the Akt/mTOR upregulation of NO production (366). Aging (which is associated with inflammation, hindered insulin signaling, and muscle loss) results in reduced activation and speed of satellite cell migration to half of that of young cells, which is reversed by NO (367, 368).

 

Ceramides

Ceramides are reactive lipid species that, for all intents and purposes, behave like reactive oxygen species (ROS) within muscle tissue (369). It is a 2nd messenger in TNF-alpha inflammatory signaling cascades (370). Ceramide accumulation in muscle is higher in obese and aged subjects, concomitant with decreased sensitivity to insulin and its anabolic effects (371, 372). Ceramide also decreases sensitivity of mTOR to amino acid induction of protein synthesis (373). In addition to insulin signaling, it diminishes anabolic responsiveness to IGF-1 by elevating Akt degradation (374, 375, 376). As would be expected, ceramide also reduces glucose uptake and glycogen synthesis, via inhibition of Akt/mTOR (377, 378).

Of note, even though we are focusing on the anabolic and anti-catabolic actions when discussing insulin signaling pathways, uptake up glucose and amino acids, as well as glycogen synthesis, are generally increased when insulin sensitivity is increased. These are not divergent pathways. It simply is not our main focus, here.

In addition to decreased anabolic activity, the decreased activity of Akt by TNF-alpha and ceramides also takes the breaks off of catabolic signaling via FoxO and NF-kB, promoting muscle atrophy (379, 380).

Exercise (surprise, surprise) reduces muscle ceramide content, restoring insulin sensitivity (381).

 

Testosterone  

The testis barrier basically works exactly the same as the gut barrier, including 1) being susceptible to increased permeability to LPS and inflammatory damage, 2) the enhanced expression of tight junction proteins and improvement of barrier function by bacterial fermentation products such as butyrate, and 3) modulation of all of this by the gut microbiome (382, 383). LPS administration in healthy subjects inhibits testosterone production directly in the Leydig cells of the testes (384, 385).  Germ free mice (which do not have bacteria to produce SCFAs) show increased blood-testis-barrier permeability and lower testosterone production, which is fixed with probiotic administration (386), 387, 388).

Obesity and metabolic syndrome are associated with lower testosterone levels, along with the low-grade inflammatory state (389, 390). A close relationship exists between the development of a pro-inflammatory state and the decline in testosterone levels, and these are thought to be very much causally linked (391, 392). Finally, heavy endurance exercise training (like marathons and such) is consistently associated with persistent low-grade systemic inflammation together with reduced free and total testosterone levels (393, 394).

You are no doubt familiar with the positive effects of testosterone on muscle, so we won’t get into that, but I will just note that testosterone inhibits the LPS/TLR-4/TNF-alpha inflammatory, anti-anabolic/pro-catabolic pathways (395).

 

 

LPS and Catabolic Pathways

This is simplified a bit, once again, but LPS induced increases in catabolism basically proceed as follows:

LPS/TLR-4/TNF-a/ROS    INCREASES    NF-kB/Atrogenes/Muscle Breakdown
LPS/Cortisol/Myostatin    DECREASES  Akt  INHIBITION OF   FoxO/Atrogenes/Muscle Breakdown
LPS/TLR-4/TNF-a/ROS/NF-kB<->Myostatin<->ROS<->NFKb and FoxO/Atrogenes/Muscle Breakdown

Just like with inhibition of anabolic signaling, LPS escapes the gut, increasing inflammatory cytokines like TNF-alpha and reactive oxygen species throughout the body. This elevates NF-kB, which then triggers atrophy promoting genes (atrogenes) that subsequently induce the physical breaking down of proteins in muscle tissue. LPS also amplifies cortisol release, which increases myostatin, which inhibits Akt. This takes the breaks off of FoxO activated atrogene expression which, again, subsequently induces the physical breaking down of proteins in muscle tissue (396). There is also a feed forward myostatin/TNF-alpha/ROS/NF-kB loop, where they all increase each other, which results in activation of both NF-kB and FoxO (397, 398). NF-kB and FoxO, together, account for 95% of muscle fiber atrophy, so let’s take a look at some data on those two (399).

 

NF-kappaB

Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kB), along with FoxO, is one of the two primary atrogene activating pathways at the end of the LPS induced catabolic chain (400). It is induced by reactive oxygen species generated by TNF-alpha, and blocking ROS production prevents its activation by LPS administration (401, 402). Blocking TLR-4, upstream of TNF-alpha, also inhibits NF-kB (403).

NF-kB is implicated in various models of atrophy (404, 405). It is significantly elevated, along with TNF-alpha, in myocytes from obese type-2 diabetics (406).  Insulin resistant subjects display higher elevations in NF-kB in response to LPS than normal glucose tolerant ones (407). The resistance to the anabolic effects of exercise seen in aging is also associated a rise in NF-κB activity (408). Interestingly, the increases seen with aging, and the associated inflammation, is normalized with lifetime calorie restriction (known to be anti-inflammatory) in animal models (409, 410).

Though, it increases catabolism in both slow-twitch and fast-twitch muscle fibers, NF-kB is more highly expressed in slow-twitch fibers (411, 412). It is particularly noted in disuse atrophy, so hopefully you already have that part of it covered with exercise (413, 414). It also inhibits Akt, perhaps via myostatin, which would ultimately also induce catabolic FoxO, which we will talk about next (415). Thus, its indirect negative effects of NF-kB on muscle may be even more important than the direct ones.

 

 

FoxO

The Forkhead Box O (FoxO) family is the second major atrogene activating pathway at the end of the LPS induced catabolic chain. It is induced by cortisol and myostatin, and it results primarily in atrophy of fast-twitch fibers (416). It is stimulated by ROS, likely through myostatin (417). FoxO is negatively regulated by Akt, as we mentioned previously (418, 419). When Akt’s inhibition of FoxO is removed, atrogenes are induced and loss of muscle mass follows (420, 421). It is inhibited by both insulin and IGF-1 signaling via Akt (422, 423). FoxO is likely the more important catabolic pathway vs. NF-kB, both because of the preferential fast-twitch degradation and because activation occurs in more common atrophy promoting situations due to the nexus with the ubiquitous Akt. Blockade of FoxO also prevents muscle atrophy from glucocorticoids, which leads us to our next segment (424).


Cortisol

Cortisol strongly activates both anti-anabolic (via inhibition of insulin signaling) and catabolic (via myostatin and FoxO) pathways, but we are putting it in the catabolic section. Being a stress hormone, it is triggered by not just perceived emotional stress, but energetic stress, such as with starvation, or for our purposes, the metabolic stress of the LPS induced inflammatory response (425). 

Before we get into the negative effects of gut dysbiosis on cortisol in relation to muscle, it should be mentioned that there exists a bidirectional communication system between the gastrointestinal tract and the brain (426, 427). A full treatment of the Gut-Microbiota-Brain axis is well beyond our scope, but in addition to dysbiosis and inflammation messing up the stress axis, stress and anxiety are signaled from the brain to the gut and mess it up, as well (428, 429). In other words, it is a feed-forward vicious cycle.

Getting back to LPS and cortisol… As a systemic immunological stressor, LPS invokes a prolonged activation of the hypothalamic-pituitary-adrenal (HPA) axis via cytokines such as TNF-alpha, ultimately increasing cortisol release from the adrenals (430, 431). Cortisol is anti-inflammatory, and synthetic glucocorticoids are well known as being useful for this purpose (432). This anti-inflammatory activity, from an evolutionary perspective, likely serves as a mitigating factor in fever/ROS induced cellular toxicity (433, 434). Indeed, impairment of the HPA axis results in greatly increased lethality from LPS/endotoxic shock (435).

Getting to cortisol and muscle, the purpose of cortisol with cellular stress such as from the LPS inflammatory cascade is to rapidly mobilize carbohydrate, fat, and protein stores to provide energy for the fight (436). With inflammation, protein is particularly in demand, as it is necessary for synthesis of acute phase reactants, which are a group of proteins that modulate the immune response (437). Thus, muscle protein synthesis is suppressed while breakdown is activated to provide said protein (438). This response also increases gluconeogenesis from amino acids preferentially over fatty acid oxidation as fuel to quickly provide ATP for increased energetic demands (439). We’ve basically mentioned all of that before, but it is worth repeating, as it is the “Why” on something meant to protect you going so terribly wrong.

Cortisol quickly initiates muscle fiber atrophy, as IGF-1 and insulin signaling are blunted while myostatin is increased (440, 441, 442). This is mediated, downstream, through the Akt/mTOR and Akt/FoxO pathways, respectively (443, 444). Even worse, this atrophy is preferential toward high energy demanding fast-twitch fibers (445, 446). Glucocorticoids also initiate NF-κB activation, likely through the myostatin-ROS pathway mentioned earlier (447). In addition to insulin resistance through Akt/mTOR inhibition, glucocorticoids also reduce the activity of GLP-1, which we will talk about in a bit (448)

Lactobacillus has been found to block restraint stress induced increases in LPS and cortisol (449). Interestingly, though cortisol inhibits mTOR’s anabolic activity, mTOR modulates glucocorticoid receptor function, counteracting its catabolic effects (450). So, more good news on BCAAs.

 

Myostatin

Myostatin is the major mediator in cortisol’s negative effects on muscle size, so we will give it its own little mini-section. It is upregulated by glucocorticoid administration and stress (451, 452). This stimulates muscle atrophy through a cascade of signals that includes activation of FoxO and NF-kB (453, 454, 455). Myostatin overexpression results in an atrophic phenotype with fast-twitch fibers being most sensitive (456). Myostatin also inhibits Akt, thus insulin and IGF-1 anabolic signaling through mTOR (457, 458, 459).

 

Part 5 finale on Thursday, June 28th

Gut and Muscle Graphic.png

Par Deus

The Best Probiotics That Money Can’t Buy.

Unfortunately, several species of bacteria with some of the very best data are not available commercially, due to regulatory issues and well as practical challenges such as stability and viability of the bacteria themselves. We are working on these, as are several other groups, but it will happen later rather than sooner, at best.

Fortunately, there are a myriad of ways to specifically target and increase these strains using methods that ARE available. And, that is exactly what we have done. So, let’s take a look at these novel wonder-bacteria, and then we will get to the data on B. adolescentis as the ultimate cross-feeding probiotic.


Genus Bacteroides

Bacteroides are butyrate and propionate producing. Levels were 6-fold higher in lean vs. obese subjects, as well as being reduced in obese patients, in general, compared to control populations (135-138). The Firmicutes:Bacteroides ratio was also significantly worse in obese patients, even in comparison with the merely overweight (137, 138). It has a negative correlation with fat mass and waist circumference (139, 140). It was also 60% lower in obese pigs – yeah, apparently that is a thing (141).

Bacteroides levels in Type-2 diabetes were only half that of those with normal glucose tolerance (142). Lower Bacteroides was correlated with increased energy intake (143). Additionally, it was decreased after smoking cessation similar to differences in obese compared to lean subjects suggesting a link between Bacteroides and the weight gain of smoking cessation (144).

Among various species in the Bacteroides genus, B. uniformis reduced bodyweight gain, triglycerides, and adipocyte volume while improving insulin and leptin sensitivity.  It also lowered LPS and other inflammatory signals (145). Bacteroides acidifaciens decreased bodyweight and fat gain, while increasing fatty acid oxidation via PPAR-alpha (146). In addition to an elevated Firmicutes:Bacteroides ratio, B. vulgatus levels were found to be lower in the obese (147).

B. fragilis releases a symbiotic immunomodulatory anti-inflammatory factor called Polysacharride A (148).  This activates TLR-2, which releases anti-inflammatory interleukins. PSA is basically the opposite of LPS, and TLR-2 the opposite of TLR-4 (149). This has been shown not just to prevent but to cure experimental colitis, an extreme version of a leaky, inflammatory gut (150). It has also been shown to prevent demyelination of neurons in the central nervous system, indicative of protection against inflammation well outside of the gut (151).

Finally, a few tidbits that will make more sense after reading the Primer™ write-up.  A few of the Bacteroides species bind to mucins for colonization and consume these mucin polysaccharides (152, 152b). Bacteroides species also have greater glycan degrading capability than Firmicutes, thus they are preferentially increased by polyphenols (153). Hint: Primer™ contains both mucin and polyphenols.

 

Faecalibacterium prausnitzii

Faecalibacterium prausnitzii is butyrate producing and is considered a physiological sensor and marker of human health (154). It does not get much more important than that. It is lower in the obese and type-2 diabetics (155-157). Conversely, it is higher in normal glucose tolerance vs. prediabetic subjects (158).

Faecalibacterium prausnitzii is also negatively correlated with inflammatory markers and sharply decreased in inflammatory bowel diseases (157, 159). It is greatly reduced in ulcerative colitis and less abundant in Crohn’s disease (160, 161). As would be expected from the above, it improves intestinal barrier function (162).

 

Akkermansia muciniphilia

Akkermansia muciniphilia is mucin degrading, meaning it feeds on mucins (163). Levels are higher in lean subjects than the general population (164).  It is also decreased in obesity and type-2 diabetes. Its administration reduced fat mass, adipose tissue inflammation, and enhanced insulin sensitivity. Along with this, improved gut barrier function and increased intestinal endocannabinoid levels were seen (165).

This species is also inversely related to fasting glucose, waist-to-hip ratio, subcutaneous adipocyte diameter, plasma triglyceride levels, visceral adipose tissue mass, and insulin resistance (166). Along with enhanced glucose tolerance, it reduced adipose tissue inflammation (167). Akkermansia levels are higher in normal glucose tolerance vs. pre-diabetic subjects (168). It decreased inflammatory cytokine production and protected intestinal barrier function in experimental colitis (169). Finally, its levels are reduced in ulcerative colitis (170).

 

Roseburia Species

Roseburia species are butyrate producing (171). An increase in this species is associated with decreased body weight, fat mass, insulin sensitivity, and triglycerides -- independent of calorie intake (172). Increased Roseburia correlated with reduced body weight, improved profile of lipid and obesity related gene expression, along with a normalized inflammatory status (173). It is also lower in type-2 diabetes (174). Levels are increased by a Mediterranean diet, as is insulin sensitivity (175). Roseburia is enriched in healthy populations vs. those with atherosclerosis (176). And, its levels display an inverse correlation with disease activity in ulcerative colitis (177).

High protein/low carbohydrate diets, which are so effective and popular, reduce Roseburia and SCFA levels (178, 179). This does not mean don’t use them, it just means make sure you make a point to get fiber/prebiotics to feed your good bacteria that produce SCFAs. Butyrate is especially important amongst the SCFAs, as it the preferred energy source, along with Glutamine, for epithelial cells in the colon (180). Butyrate is basically the fat to Glutamine’s protein and carbohydrate as far as feeding these cells. We will talk more on Glutamine in the Primer™ write-up.

 

Bifidobacterium adolescentis as Cross-Feeder

As mentioned, the most important contribution of B. adolescentis is to feed other bacteria, specifically the really good ones that we just talked about and which we cannot get commercially.

B. adolescentis is superior to other potential cross-feeding Bifidobacterium in that it provides a slow, steady degradation of oligosaccharides for a long, continuous release of substrate for these various bacteria to feed on. It is essentially time-released, allowing acetate feeding, butyrate producing bacteria to grow and thrive throughout the entire length of the gut (181).

Faecalibacterium prausnitzii is almost fully dependent on acetate, which B. adolescentis supplies. F. prausnitzii converts it to butyrate with 85% efficiency, and its growth is enhanced by co-culture with B. adolescentis (182, 183).

Roseburia is also an acetate user (184). It is, in fact, generally required for growth (185). In addition to acetate production, B. adolescentis increases Roseburia via partial breakdown of oligosaccharides, which it can then utilize (186).

Cross-feeding with Bifidobacterium modulates the prebiotic effect of inulin and arabinoxylan-oligosaccharides on Roseburia and F. prausnitzii by making acetate available (187). Roseburia was able to grow in pure complex carbohydrate cultures, which it cannot metabolize on its own, owing to cross-feeders (188).

See "Full Science Write-up" here http://neobium.org/product-line/suprabiotic/ for references.

Par Deus

Primer(tm) -- Part 1

Primer™
Microbiomic Superfuel™

Bacteria need to eat, too. Pamper them. A well fed microbiome is a happy and healthy microbiome. Give them the gourmet shit. Primer is a generously portioned blend of 11 prebiotic dishes and desserts meticulously chosen to entice the good bacterial denizens and citizens of your gut to feed and breed, prodigiously, while starving and poisoning unwelcome pathogenic bacterial inhabitants. Grow your own, right at home.

Currently, probiotics are mostly thought of and used in relation to a healthy digestive system (reducing upset stomach, gas and bloating, diarrhea, and IBS type symptoms) and the immune system (coughs, colds, and general sinus and respiratory health). While they certainly are indeed useful for such applications, the ramifications of an unhealthy gut and microbiota go far, far beyond that.

The gut and its microbiome are essentially a massive endocrine organ, controlling and influencing basically your entire body and brain. And, given that all of the trillions of bacteria that call it home originally came from outside your body – and entered without your permission – it is by far the most important organ in which we can take steps to manipulate and take back control.

We will first look at some basic science and data on how this all works. Then, we will look at studies that have shown alterations in the microbiotic make-up of the gut, and the correlations they display in health and disease, suboptimal and optimal fitness, and just general things that everyone would consider part of good or bad life outcomes.

It is a massive subject, far too much to discuss in complete depth, here, so we’ll do our best to keep it as short and sweet as possible while still giving you enough background in this field to understand the shocking reality, scope, and importance of this microscopic invasion.

Subsequently, we will get down to business and specifically get into the science of Shock Treatment™, the first step in the process of making yourself king or queen of your own castle, again. We’ll show you how it can immediately ameliorate symptoms, while preparing the gut for a permanent fix, with special emphasis on a lean, healthy body.

Deus Vult!

 

The Basics

It basically works like this. The Western lifestyle, including diet, lack of exercise, and alcohol use (and, in all likelihood, genetics, though the data just isn’t there, yet) leads to an imbalance of the bacterial composition of the gut (1,2). This results in the excess production and release of inflammatory signals, such as Lipopolysaccharide, TNF-alpha, interleukins, and prostaglandins, which subsequently escape the gut and enter the rest of your body (3).

Though, they all contribute to the pathologies we will cover in various ways, it is Lipopolysaccharide (LPS) that we will focus on the most. Within the gut, this leads to the general digestive issues and inflammatory bowel syndromes like IBS and colitis that you have commonly known probiotics as being used to alleviate (4).

While fixing digestive disorders will come along for the ride, our primary focus is going to be on body composition and metabolic health. In other words, we want to make you leaner, protect against diabetes, and help keep you from having a heart attack or stroke. However, there really is so much more to it than that, as a few quotes from the literature aptly demonstrate:


“Changes in the composition of the gut microbiota (dysbiosis) may be associated with several clinical conditions, including obesity and metabolic diseases, autoimmune diseases and allergy, acute and chronic intestinal inflammation, irritable bowel syndrome (IBS)…” (5)

 

“In this milieu… disturbance of the gut microbiota balance and the intestinal barrier permeability is a potential triggering factor for systemic inflammation in the onset and progression of obesity, type 2 diabetes and metabolic syndrome.” (6)

 

“Through these varied mechanisms, gut microbes shape the architecture of sleep and stress reactivity of the hypothalamic-pituitary-adrenal axis. They influence memory, mood, and cognition and are clinically and therapeutically relevant to a range of disorders, including alcoholism, chronic fatigue syndrome, fibromyalgia, and restless legs syndrome… Nutritional tools for altering the gut microbiome therapeutically include changes in diet, probiotics, and prebiotics.” (7)

 

As you can see, alterations in the microbiota can affect basically everything, but that there is also hope for change.

Getting back to the gut and body composition, the aforementioned Lipopolysaccharide (LPS) leads to overactivation of cannabinoid receptor 1 (CB1) within the gut, which causes an increase in intestinal motility (speed of food going through) in the proximal parts of the intestine. This leads to less absorption of nutrient feedback signals that tell the brain you are well fed, and that it is time to stop eating (8). Concurrent with this is an increase in transit time in the colon, which results in a greater total harvest of caloric energy from your food (9, 10).

In other words, the signal your brain is getting is that you are not getting enough food, while you are actually extracting more calories from what you eat. This not only directly leads to more fat accumulation from harvesting more calories, it lends itself to over-eating. This aggravates the cycle further, as overeating and increased adiposity are themselves inflammatory. So, what you have is more inflammation, more dysfunction, greater food intake, greater extraction of food, more fat accumulation, then REPEAT!

The carnage does not even end here. Along with this inflammatory state is a disruption in the intestinal barrier. Intestinal permeability is increased and these inflammatory agents spill out systemically. This is often called a “leaky gut”. This results in a low-level inflammatory state in the entire body. The biggest culprit here is, once again, LPS (11).

LPS activates CB1 receptors in the body and brain, just as in the intestine. In the fat tissue, this leads to activation of PPAR-gamma, and an upregulation of triglyceride synthesis, fat cell formation, and fat storage (12). In the brain, activation of CB1 increases orexegenic pathways, thus increasing appetite, hunger, and ultimately, food intake (13). This should not much as much of a surprise considering “the munchies” that accompany intake of famous cannabinoid receptor agonist, marijuana.

And, LPS is not done yet, not at all. It also activates Toll-like Receptor 4 which, along with other inflammatory signals (TNF-alpha, interleukins), promotes both insulin and leptin insensitivity, peripherally and centrally (14, 15).  At this point, your adipostat (the thermostat for your body fat level) is wrecked.  Your ability to control food intake is gone, and you are a fat storing machine. Obviously, this is not what you want your body doing to itself. It is not what you want it doing to you. It is not what you want it doing to your life.

Oh, and to top it off, atherosclerosis, heart disease, and stroke are promoted by these same inflammatory pathways. Combined with the increased body fat and insulin resistance, you officially have all of the perfect ingredients for the dreaded Metabolic Syndrome (16, 17).

And, it is just a bunch of microscopic bacteria that call your gut “home” causing all of this devastation.

 

General Data

The most well-known genera of bacteria in commercial probiotics are Lactobacillus and Bifidobacterium. They are also among the most common in the body, along with several other ones which are not commercially available, but which we can manipulate with supplementation.  We will talk about these in length in the SupraBiotic™ and Primer™ write-ups.

Unfortunately, Lactobacillus belong to the Firmicutes phylum which has been found to be associated with weight gain and obesity (18-20). Just a 20% increase in Firmicutes (which Lactobacillus is usually the primary genus) with an equal decrease in Bacteroides results in an increased energy harvest of 150 calories per day in humans (21). That is equal to 15lbs of fat per year!  The Western style diet promotes these negative changes in microbial proportions (22). Thus, one can plainly see why it can be so difficult to get lean, as well as how easily obesity has become an epidemic.

Interestingly, smoking cessation produces the same negative changes in bacterial composition, while gastric bypass surgery improves it (23-24). The well-known effects on weight with both of these further highlights the negative body compositional effects of this intestinal dysbiosis.

In addition, probiotic treatment with several Lactobacillus species that are in a great number of commercial formulations, including Lactobacillus acidophilus, Lactobacillus fermentum, and Lactobacillus ingluviei , have been directly associated with weight gain and obesity (25). Type-2 diabetics had significantly more Lactobacillus, with L. acidophilus being particularly bad in this regard (26).  Further, L. reuteria and L. sakei have been found to be positively associated with obesity and body mass index (27-29). They probably don’t tell you that on the label.

More powerful evidence of the profound effect of the microbiota on body weight and metabolism come from studies on “fecal transfer”.  And, yes, that is exactly what it sounds like – transferring poop from one subject’s intestine to another’s.

In twins, transfer of an obese microbiota to lean mice was accompanied by an increase in bodyweight, fat mass, and a dysbiotic alteration of the Firmicutes:Bacteroides ratio to reflect that of the obese model (30). A similar transfer replicated the obese phenotype with increased weight gain, lipogenesis, adipogenesis, overeating, and lower satiety, as well as inflammation and hyperglycemia in formerly lean, healthy subjects (31, 32).

On the other side of the coin, transferring the intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome, as well as reversing obesity and gastrointestinal issues (33). It also reduced markers of metabolic syndrome, inflammation, and oxidative stress in animals challenged with high-fructose diets (34).

Obviously, while it highlights the science, doing a fecal transfer is not terribly practical, appetizing,  or readily available -- unless maybe you are in California.

Fortunately, there is good news. While several species and strains of lactobacillus have been found to promote weight gain, several have also been found to protect against it. And, of course, we only used the good ones. Furthermore, Bifidobacterium have shown only positive effects to a remarkable extent. 

Bifidobacterium are anti-obesity and lipid lowering, decreasing fat weight, blood glucose, cholesterol, and triglyceride levels (35). They are higher in lean subjects, as well as being lower in obese (36, 37). They are significantly lower in type-II diabetics and have been shown to improve glucose tolerance as well to decrease inflammatory signaling (38-40). In addition, they increase levels of EPA, DHA, and CLA in fat tissue and the brain (40). They have also been found to decrease with aging (41).

We can also readily manipulate levels of the good bacteria that are not commercially available such as Bacteroides species, Akkermansia Muciniphilia, Faecalbacterium Prausnitzii, and Roseburia via supplementation of ingredients that ARE available.

So, let’s get to it.

You may have noticed that almost no probiotic formulas contain just a single species of bacteria, nowadays. And, if you did not, I will just say that it is for a good reason. They work better in combination. This applies to the prebiotics that feed them as well. You need a variety of prebiotics to grow a variety of probiotic bacterial species.

First of all, microbial diversity seems to be good, in and of itself. Essentially, a diverse gut is a healthy gut (42). Obesity has been associated with a lack of microbial diversity and, as you might expect, lean subjects have greater microbial diversity in the gut (43-45). Insulin sensitivity is also improved along with diversity increases (46).  Finally, in the interesting but not terribly shocking category, exercise increases microbial diversity (47, 48).

Increased diversity also works to specifically create an environment where probiotic bacteria can thrive, thus enhancing their ultimate performance (49). Compared to individual strains alone, this diversity increases adhesion to intestinal mucus, which is necessary for most survival, growth, and activity (50, 51).  Conversely, bacteria inhibit adhesion of pathogenic bacteria better when in combination (52, 53).

However, you do not want to just try to have every single species and strain in existence growing inside of you. It needs to be done rationally. If not, they can interfere with each other’s actions and compete for space and resources (54-56). 

But, maybe the most interesting benefit of supporting a combination of bacteria is through cross-feeding. This is when one bacterial species produces metabolic substrates the other species and strains use for fuel (57, 58). Bifidobacterium adolescentis is the most interesting and important species in this regard as it functions as THE archetypal cross-feeder for several of the most important and impressive strains of bacteria. And, those strains are not commercially available. B. adolescentis produces acetate and oligosacharrides which are then consumed by these acetate utilizing, butyrate and propionate producing bacteria (59).

For references, see "View Full Science Write-Up" here: http://neobium.org/product-line/primer/

Par Deus

SupraBiotic™
The Slimming Probiotic™

Beyond the cutting edge of probiotic research and development, SupraBiotic™ combines 6 probiotic strains, 80 billion colony forming units, with an unrivalled auxillary formula, optimized to turn the bacterial milieu of your gut into a mean, lean body machine. It does not stop at fat loss, though, fighting and fixing inflammatory pathways that wreak havoc on insulin sensitivity, cardiovascular and digestive health, the immune system, and even your skin.

Currently, probiotics are mostly thought of and used in relation to a healthy digestive system (reducing upset stomach, gas and bloating, diarrhea, and IBS type symptoms) and the immune system (coughs, colds, and general sinus and respiratory health). While they certainly are indeed useful for such applications, the ramifications of an unhealthy gut and microbiota go far, far beyond that.

The gut and its microbiome are essentially a massive endocrine organ, controlling and influencing basically your entire body and brain. And, given that all of the trillions of bacteria that call it home originally came from outside your body – and entered without your permission – it is by far the most important organ in which we can take steps to manipulate and take back control.

We will first look at some basic science and data on how this all works. Then, we will look at studies that have shown alterations in the microbiotic make-up of the gut, and the correlations they display in health and disease, suboptimal and optimal fitness, and just general things that everyone would consider part of good or bad life outcomes.

It is a massive subject, far too much to discuss in complete depth, here, so we’ll do our best to keep it as short and sweet as possible while still giving you enough background in this field to understand the shocking reality, scope, and importance of this microscopic invasion.

Subsequently, we will get down to business and specifically get into the science of Shock Treatment™, the first step in the process of making yourself king or queen of your own castle, again. We’ll show you how it can immediately ameliorate symptoms, while preparing the gut for a permanent fix, with special emphasis on a lean, healthy body.

Deus Vult!

 

The Basics

It basically works like this. The Western lifestyle, including diet, lack of exercise, and alcohol use (and, in all likelihood, genetics, though the data just isn’t there, yet) leads to an imbalance of the bacterial composition of the gut (1, 2). This results in the excess production and release of inflammatory signals, such as Lipopolysaccharide, TNF-alpha, interleukins, and prostaglandins, which subsequently escape the gut and enter the rest of your body (3).

Though, they all contribute to the pathologies we will cover in various ways, it is Lipopolysaccharide (LPS) that we will focus on the most. Within the gut, this leads to the general digestive issues and inflammatory bowel syndromes like IBS and colitis that you have commonly known probiotics as being used to alleviate (4).

While fixing digestive disorders will come along for the ride, our primary focus is going to be on body composition and metabolic health. In other words, we want to make you leaner, protect against diabetes, and help keep you from having a heart attack or stroke. However, there really is so much more to it than that, as a few quotes from the literature aptly demonstrate:

"Changes in the composition of the gut microbiota (dysbiosis) may be associated with several clinical conditions, including obesity and metabolic diseases, autoimmune diseases and allergy, acute and chronic intestinal inflammation, irritable bowel syndrome (IBS)…” (5)

 

“In this milieu… disturbance of the gut microbiota balance and the intestinal barrier permeability is a potential triggering factor for systemic inflammation in the onset and progression of obesity, type 2 diabetes and metabolic syndrome.” (6)

 

“Through these varied mechanisms, gut microbes shape the architecture of sleep and stress reactivity of the hypothalamic-pituitary-adrenal axis. They influence memory, mood, and cognition and are clinically and therapeutically relevant to a range of disorders, including alcoholism, chronic fatigue syndrome, fibromyalgia, and restless legs syndrome… Nutritional tools for altering the gut microbiome therapeutically include changes in diet, probiotics, and prebiotics.” (7)

 

As you can see, alterations in the microbiota can affect basically everything, but that there is also hope for change.

Getting back to the gut and body composition, the aforementioned Lipopolysaccharide (LPS) leads to overactivation of cannabinoid receptor 1 (CB1) within the gut, which causes an increase in intestinal motility (speed of food going through) in the proximal parts of the intestine. This leads to less absorption of nutrient feedback signals that tell the brain you are well fed, and that it is time to stop eating (8). Concurrent with this is an increase in transit time in the colon, which results in a greater total harvest of caloric energy from your food (9, 10).

In other words, the signal your brain is getting is that you are not getting enough food, while you are actually extracting more calories from what you eat. This not only directly leads to more fat accumulation from harvesting more calories, it lends itself to over-eating. This aggravates the cycle further, as overeating and increased adiposity are themselves inflammatory. So, what you have is more inflammation, more dysfunction, greater food intake, greater extraction of food, more fat accumulation, then REPEAT!

The carnage does not even end here. Along with this inflammatory state is a disruption in the intestinal barrier. Intestinal permeability is increased and these inflammatory agents spill out systemically. This is often called a “leaky gut”. This results in a low-level inflammatory state in the entire body. The biggest culprit here is, once again, LPS (11).

LPS activates CB1 receptors in the body and brain, just as in the intestine. In the fat tissue, this leads to activation of PPAR-gamma, and an upregulation of triglyceride synthesis, fat cell formation, and fat storage (12). In the brain, activation of CB1 increases orexegenic pathways, thus increasing appetite, hunger, and ultimately, food intake (13). This should not much as much of a surprise considering “the munchies” that accompany intake of famous cannabinoid receptor agonist, marijuana.

And, LPS is not done yet, not at all. It also activates Toll-like Receptor 4 which, along with other inflammatory signals (TNF-alpha, interleukins), promotes both insulin and leptin insensitivity, peripherally and centrally (14, 15).  At this point, your adipostat (the thermostat for your body fat level) is wrecked.  Your ability to control food intake is gone, and you are a fat storing machine. Obviously, this is not what you want your body doing to itself. It is not what you want it doing to you. It is not what you want it doing to your life.

Oh, and to top it off, atherosclerosis, heart disease, and stroke are promoted by these same inflammatory pathways. Combined with the increased body fat and insulin resistance, you officially have all of the perfect ingredients for the dreaded Metabolic Syndrome (16, 17).

And, it is just a bunch of microscopic bacteria that call your gut “home” causing all of this devastation.

 

General Data

The most well-known genera of bacteria in commercial probiotics are Lactobacillus and Bifidobacterium. They are also among the most common in the body, along with several other ones which are not commercially available, but which we can manipulate with supplementation.  We will talk about these in length in a bit, as well as in the Primer™ write-up.

Unfortunately, Lactobacillus belong to the Firmicutes phylum which has been found to be associated with weight gain and obesity (18-20). Just a 20% increase in Firmicutes (which Lactobacillus is usually the primary genus) with an equal decrease in Bacteroides results in an increased energy harvest of 150 calories per day in humans (21). That is equal to 15lbs of fat per year!  The Western style diet promotes these negative changes in microbial proportions (22). Thus, one can plainly see why it can be so difficult to get lean, as well as how easily obesity has become an epidemic.

Interestingly, smoking cessation produces the same negative changes in bacterial composition, while gastric bypass surgery improves it (23-24). The well-known effects on weight with both of these further highlights the negative body compositional effects of this intestinal dysbiosis.

In addition, probiotic treatment with several Lactobacillus species that are in a great number of commercial formulations, including Lactobacillus acidophilus, Lactobacillus fermentum, and Lactobacillus ingluviei , have been directly associated with weight gain and obesity (25). Type-2 diabetics had significantly more Lactobacillus, with L. acidophilus being particularly bad in this regard (26).  Further, L. Reuteria and L. Sakei have been found to be positively associated with obesity and body mass index (27-29). They probably don’t tell you that on the label.

More powerful evidence of the profound effect of the microbiota on body weight and metabolism come from studies on “fecal transfer”.  And, yes, that is exactly what it sounds like – transferring poop from one subject’s intestine to another’s.

In twins, transfer of an obese microbiota to lean mice was accompanied by an increase in bodyweight, fat mass, and a dysbiotic alteration of the Firmicutes:Bacteroides ratio to reflect that of the obese model (30). A similar transfer replicated the obese phenotype with increased weight gain, lipogenesis, adipogenesis, overeating, and lower satiety, as well as inflammation and hyperglycemia in formerly lean, healthy subjects (31, 32).

On the other side of the coin, transferring the intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome, as well as reversing obesity and gastrointestinal  issues (33). It also reduced markers of metabolic syndrome, inflammation, and oxidative stress in animals challenged with high-fructose diets (34).

Obviously, while it highlights the science, doing a fecal transfer is not terribly practical, appetizing, or readily available -- unless maybe you are in California.

Fortunately, there is good news. While several species and strains of lactobacillus have been found to promote weight gain, several have also been found to protect against it. And, of course, we only used the good ones. Furthermore, Bifidobacterium have shown only positive effects to a remarkable extent.

See "Full Science Write-up" here http://neobium.org/product-line/suprabiotic/ for references.

Par Deus

Short Chain Fatty Acids (SCFAs)

One of the primary ways that probiotic bacteria work their magic is by fermenting prebiotics and producing SCFAs (primarily acetate, butyrate, and propionate), so we are going to talk about those, and how they work.

They primarily work through two mechanisms: 1) activation of free fatty acid receptors, FFA2 and FFA3. 2) Decreasing inflammation and permeability in the gut.

SCFAs protect against obesity and insulin resistance. Butyrate and propionate induce anorectic gut hormones, while acetate does so without reducing food intake (Supplementary 1). FFAR2 deficiency results in obesity on a normal diet, whereas with overexpression, subjects remain lean, even on an obesity promoting high-fat diet. Activation of FFAR2 suppresses insulin signaling in adipocytes, which inhibits fat accumulation in adipose tissue and promotes the metabolism of lipids and glucose in other tissues such as muscle (S2).

Propionate and butyrate activate intestinal gluconeogenesis. Butyrate does so through AMPK, while propionate works through a gut-brain neural circuit involving FFAR3 (S3). Propionate is sensed in the portal vein walls via FFAR3, initiating intestinal gluconeogenesis. This glucose then triggers a signal to the brain to modulate hunger sensations and normalize whole body glucose homeostasis (S4). In a fasting state, as much as 62% of infused propionate is converted to glucose, accounting for 69% of total glucose production (S5). This is quite applicable to lower carb diets. Basically, it makes your brain think you are plenty fed with carbs/glucose, so it signals not to eat more, as well as not to produce or pump out more glucose into the blood.
 

SCFAs also stimulate the release of anorectic and satiey inducing peptides like GLP-1 and PYY via FFAR2/3 (S6, S7). Activation of FFAR3 by SCFAs inhibits insulin secretion and increases sympathetic outflow. This raises energy expenditure and help to protect against obesity (S8, S9). Acetate has been found to increase brown adipose tissue, UCP1, and mitochondrial biogenesis via FFAR2 (S10).

Short-chain fatty acids also improve intestinal barrier function via activation of AMPK (S11). Sodium butyrate has been specifically found to be an AMPK agonist (S12). And, butyrate increase tight junction assembly, thus improving barrier function, specifically through AMPK (S13, S14).

This seems like as good of a place as any to add a bit more about AMPK, as it is one of the major targets in all of this.

AMPK

AMPK is a primary signaler in the maintenance of tight junction integrity and intestinal barrier function. It is one of the most important pathways in preventing the “leaky gut” we have spoken of earlier in regard to LPS and other inflammatory and infectious molecules escaping into the body to wreak havoc (S15, S16). Modern food processing and the Western diet is a particularly egregious malefactor in this (S17).


In addition to its involvement in barrier function, AMPK activation is extremely positive for the great bacteria that we can’t get commercially.

Metformin increased Akkermansia 18-fold through AMPK activation. Also, against a high-fat diet, it restored Bacteroides levels and the Firmicutes:Bacteroides ratio to that of  lean subjects (S18-S20). It inhibited LPS induced inflammation and gut permeability increases, while improving glucose uptake and insulin sensitivity (S19). Akkermansia increases are likely at least partially due to greatly elevated production of its favorite food, mucin, which is stimulated by AMPK. It also reduces insulin resistance and adipose tissue inflammation in a high-fat diet (S20).

 

Pomegranate Extract
Pomegranate Extract
is an extremely rich source of polyphenols. Polyphenols are generally prebiotic for good bacteria (Bifidobacterium, Akkermansia, Bacteroides, and Roseburia), and antibacterial for less favorable and pathogenic ones (189-191). Fruit/berry based polyphenols seem to be particularly favorable toward Bacteroides, the Firmicutes:Bacteroides ratio, and Akkermansia compared to other polyphenol sources. Lactobacillus (Firmicute) lack glycan degrading enzymes, thus do not grow on them particularly well compared to the others (192).

Strawberry polyphenols elevate Bifidobacterium and Bacteroides, butyrate and propionate, as well as decreasing Firmicutes (193). Red wine polyphenols raise Bifidobacterium and Bacteroides as well (194, 195). Polyphenols improve the Firmicutes:Bacteroides ratio, while also increasing Roseburia (196, 197).

Akkermansia REALLY loves polyphenols (198). Grape polyphenols gave a 10-fold increase in Akkermansia and decreased the Firmicutes:Bacteroides ratio, while also reducing weight gain, triglyceride storage, insulin resistance, LPS, and inflammation (199). Cranberry polyphenols produced a 30-fold increase in Akkermansia and decreased weight gain, visceral adipose tissue, triglyceride synthesis, insulin resistance, LPS, and inflammation (200).

Finally,
Pomegranate Extract, itself, produced a massive 33 to 47 fold increase in Akkermansia (201).  Caffeic acid, a component of Pomegranate Extract, increased Akkermansia 15-fold vs control and several hundred fold vs. subjects with induced colitis! It also improved the Firmicutes:Bacteroides ratio (202).

Polyphenols activate AMPK, enhancing intestinal barrier function (203). They increase tight junction proteins, decrease tight junction pore formation, and ameliorate inflammatory bowel disease (204). Pomegranate Extract activates AMPK at 2 times the potency of metformin (205). It also displayed extremely potent alpha-glucosidase inhibitory activity (this is an ezyme that metabolizes carbohydrates to glucose), being 10 times as potent as acarbose, lowering blood glucose after sucrose intake, but not after glucose (206, 207). It consistently decreases glucose levels, as well as being anti-inflammatory (208, 209).

 

Fermented Herbs

Fermentation of herbs results in much higher concentrations of active compounds compared to unfermented (210). This same fermentation is done in the body, but it is highly dependent upon the microbial make-up of the individual’s gut, so it can vary widely from person to person (211, 212). As just one example, a fermented herb preparation inhibited LPS mediated inflammatory damage, while the unfermented was ineffective (213, 214)

 

Fermented Kudzu
Kudzu is a group of polyphenol rich plants belonging to the pea family. Its administration reduced body weight, fat mass, and lipogenesis while stimulating lipolysis and thermogenesis (215). It also lowers body mass index and visceral fat (216). Kudzu increased fatty acid oxidation, and decreased weight gain, triglyceride levels, and visceral adipose tissue on a high-fat diet (217).  In addition, it improves insulin sensitivity and lipid metabolism (218).

Kudzu is anti-inflammatory, with components inhibiting LPS, TNF-alpha, and ROS induced inflammation (219, 220). It is also a potent inhibitor of COX-2 (221). In addition, Kudzu reduced intestinal permeability and improved intestinal barrier function (222, 223). Finally, it reduces expression of the dreaded TLR-4 (224, 225).


Fermented Ginseng
The anti-obesity effect of unfermented ginseng was shown to be dependent on bacterial make-up of the microbiota (226). It increased mucins (the Akkermansia and Bacteroides food) by 50% (227). It is metabolized by Bifidobacterium as well as Bacteroides. There is a dramatic difference in levels of those bacteria between metabolizers and non-metabolizers, suggesting strong prebiotic specificity toward them (228). And, it was indeed found to enhance growth of Bacteroides (229).

Absorption of one of its main active ingredients, Compound K, is increases by prebiotics (230). And, there are plenty of those in Primer™.  Fermented Ginseng decreased bodyweight, fat mass, and food efficiency, while improving insulin and leptin sensitivity (231, 232). In addition to reduced body weight, decreases in fat mass, adipocyte size, and glucose uptake were also observed. And, all of these effects were superior with fermented vs. regular ginseng (233, 234). Finally, it decreases inflammatory cytokines and protects the intestinal barrier (235, 235b).

 

Mulberry Extract
SupraBiotic™ contains an industry-best Mulberry Extract, standardized to over 5% 1-Deoxynojirimycin (1-DNJ) and containing relevant amounts of d-Fagomine, as well. Like all berries, it also has high polyphenol content, the benefits of which we have already talked about.

1-DNJ
1-DNJ is a naturally occurring carbohydrate mimic. Its use significantly lowered body weight, blood glucose, and serum insulin levels, and it conversely improved glucose tolerance and insulin sensitivity (236). It increased the insulin and leptin sensitizing peptide adiponectin (which activates AMPK), reduced visceral adipose tissue, adipose mass, triglycerides, lipid accumulation, and increased fatty acid oxidation (237).

It is remarkably potent, elevating adiponectin, GLUT4, and AMPK at just .5uM (238). This is 1000 times as potent as metformin.  Along with increasing AMPK, it improved mitochondrial function and lipid metabolism (239). Finally, it is a more potent alpha-glucosidase inhibitor than acarbose, which futher helps with glucose and insulin (240).

D-fagomine
D-fagomine
is also a naturally occurring sugar mimic. It reduced weight gain, plasma triglycerides, glucose, and enhanced leptin and insulin sensitivity (241). It attentuated fat gain on high-fat diet (242). D-fagomine was also found to inhibit intestinal sucrase, lowering post-prandial glucose levels (with either sucrose or starch), as well as modulating bacterial adhesion, inhibiting pathogenic ones without effecting Bifidobacterium or Lactobacillus (243).

 

Selenium
Selenium
increases microbial diversity, and it is synergistic with probiotics for this gut bacteria modulation (244, 245). It works by enhancing the fermentation activity of gut bacteria resulting in better bacteria growth as well as output of SCFAs (246).

 

Queen’s Bee Acid (10-hydroxy-2-decenoic acid)
QBA is a medium chain fatty acid from Royal Jelly. It is a very potent AMPK agonist, being effective at just 20uM. This is 25 times as potent as research standard AICAR and the pharmaceutical metformin. (247)

We have mentioned it over and over, but it bears repeating more about the machinations that result in the vicious cycle of gut dysbiosis. Inflammation in the gut, followed by low-level but constant systemic inflammation, PRECEDES obesity and insulin/leptin resistance. It is what gets them started. If you are not either quite lean, or have been on a diet long enough that fat loss has basically stopped, insulin and leptin resistance are already at work, particularly in the brain/adipostat (248). This is bad news for appetite control, metabolism, and body weight regulation.

LPS levels of just 2 to 3-fold above normal, which occur during a Western-style/high-fat diet, initiate the low level inflammatory response that leads to reduced insulin and leptin senstivity, and ultimately type-2 diabetes and Metabolic Syndrome. And, again, this happens before the weight gain starts (249). It sets you up for it to begin in earnest.

AMPK is one of the primary brakes on this ride. It inhibits the LPS induced inflammatory response, as well as the leaky gut. Super potent AMPK agonist, like 1-DNJ and QBA, are basically airbrakes on a runaway train.

QBA inhibits LPS induced cytokine production (250). It increases GLUT4, glucose uptake, and insulin signaling (247). It enhances intestinal barrier function and tight junction assembly in an AMPK dependent manner (251-253). AMPK activation also improves LPS induced blood-brain-barrier disruption much as it does with the intestinal barrier (254). This improves central insulin and leptin signaling, keeping your adipostat functioning properly.



Palmitoylethanolamide (PEA)

PEA is a naturally occurring cannabinoid-like lipid, from a class called acylethanolamides.  It is a competitive FAAH inhibitor (this is the enzyme that breaks down endocannabinoids).  Decreased levels of endocannabinoids lead to upregulation of cannabinoid receptors, which leads to the increased activity at CB1 via LPS that gets the increased fat storage and over-eating part of the vicious cycle really going into overdrive.

Endocannabinoid activation of CB2, along with PEA/acylethanolamide activation of PPAR-alpha, normally keeps this inflammatory response balanced and in check, but when it gets out of whack, LPS à CB1 reigns supreme.

Let’s take a closer look at all of this and what PEA does to fix it.

Intake of dietary fat stimulates production of PEA, and the other acylethanolamides (255, 256).  They increase satiety, and reduce food intake and body weight (257, 258). It creates satiety via activation of PPAR-alpha in the intestine followed by direct vagal signal to brain -- i.e. immediate, no gene transcription needed (259, 260). This is one of the steps in which fast transit times in the proximal small intestine become problematic. You get less PEA, thus less satiety signaling to the brain.  

In addition, PEA specifically decreases this intestinal transit rate, so it is double plus good on appetite and satiety signaling (261).  It both directly makes you feel full and prolongs its own duration of activity in doing so. PEA does, in fact, ultimately reach the brain, where it is active in nM concentrations through gene transcription (258). But, you would have already finished eating too much at that sitting, and each of your other meals, before it did anything, centrally.

In addition to the appetite side of things, PEA decreases intestinal inflammation and permeability. It does so through CB2 and PPAR-alpha as this is blocked by antagonists of either one (262, 263). It is also anti-inflammatory in the intestine via selective targeting of TLR-4 (263).

All sounds great, right? Well, the problem is that with a Western-style or chronic high-fat diet, the PEA release trigger becomes desensitized, ultimately resulting in reduced levels (256, 259, 265). This disrupts normal functioning of the whole system, leading to LPS induction of CB1 becoming dominant. And, this is on top of losing its direct beneficial effects on satiety and food intake.

An increase in inflammation happens in parallel with decreases in PEA, endocannabinoids, and FAAH – and, an upregulation of the cannabinoid receptors (266). It all happens together, at the same time, because they are all connected. And, FAAH inhibitors restore levels of all of these and suppress this inflammation (266). FAAH inhibitors also decrease intestinal motility, as we would expect (267). They do so by restoring PEA and the endocannabinoids, thus normalizing the system.


The final bit of evidence on how this operates is that chronic administration of tetrahydrocannabinol (THC), the main active ingredient in marijuana, reduces weight gain, fat mass gain, and energy intake in obese but not lean mice, despite an initial increase in food consumption (268). This is because it is both a CB1 and CB2 agonist. So, you have anti-inflammatory CB2 activation by THC snuffing out the inflammatory LPS pathway, as well as it down-regulating and competing for CB1, such that LPS cannot act on it to wreak its havoc, unchallenged.

This THC administration even improved select gut microbiota profiles. It increased Akkermansia by 4-fold, and improved the Firmicutes:Bacteroides ratio by 6-fold (268). It did not have these same effects in lean subjects because these pathways were not messed up to begin with for them.

So, you can see that PEA helps correct the system at basically all levels that we have been talking about.

One more thing of note is that, as we mentioned with high protein diets negatively altering the bacterial make-up of the microbiota if one does not make a point to get plenty of fiber/prebiotics, the high-fat side of such diets will negatively affect PEA levels, long-term, thus the entire system will be functioning sub-optimally.

Again, I am not bashing these diets at all, they are quite effective. Consuming an excess of glucose and/or fructose is the worst thing you can do to your body as far as inflammation and insulin and everything we have been talking about, just to be clear. But, we want to be optimal, and we can be, quite easily with supplementation.
 

 

Ginger Extract (20% Gingerols)
Ginger is well known as a digestive aid. The extract is an all-around nice ingredient, aiding through several pathways, and it is particularly effective as an anti-inflammatory and protector of barrier function. The primary component of the extract is 6-gingerol, though 8-, and 10-gingerol, as well as 6-, 8, and 10-shogaol are present in significant, pharmacologically relevant numbers. They all pretty much do the same thing, just at different potencies. 

Mechanistically, it is primarily an anti-inflammatory and antioxidant. It decreases basically all inflammatory cytokines (269, 275, 276). It inhibits LPS induced inflammation as well as TNF-alpha (270). It reduced interleukins 3-fold at just 50uM, and its COX inhibition is comparable to aspirin (271-273). It also displays extremely potent anti-oxidant activity, being effective against various radicals at just 1-25uM (274).

 

Gingerols activate PPAR-alpha, as well as AMPK, with 5 times the potency of metformin and AICAR in suppression of inflammatory cytokines (275, 276). They increase tight junction proteins and integrity via protection against inflammatory assault (277, 278).  They suppress colitis via anti-inflammatory and anti-oxidant activity (279). Gingerols enhanced the survival and proliferation of intestinal epithelial cells via reductions in pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), while also elevating anti-inflammatory cytokines (IL-10 and IL-22) in colitis models (280). They also reduce spasms of smooth muscle in the digestive tract (281).

In addition, gingerols displayed some modest inhibitory activity on α-glucosidase and α-amylase, being about 1/6 as potent as acarbose (282). Finally, it increased uptake of Calcium (100+%) and Glutamic acid (60%), both of which we will talk in detail about in the Primer™ write-up (283).

 

CONCLUSION

As you can see, SupraBiotic™ takes the concept of probiotic far beyond where anyone has previously taken it before. It starts with bacterial species carefully and purposefully selected to protect against dysfunction of the gut and microbiota to promote better health, better appetite control, better metabolism, and better fat loss. On top of this, SupraBiotic™ addresses and supports novel probiotic bacterial species that you cannot attain, anywhere. And, it does so in a way that no other product is even close to doing. Finally, its supporting ingredients crush inflammation and repair your leaky gut, leaving your body functioning in the optimal way it is intended to.

SupraBiotic™ is a one of a kind product that fits in perfectly with and enhances any diet and exercise program, any supplement regimine, any lifestyle.

See "Full Science Write-up" here http://neobium.org/product-line/suprabiotic/ for references.

Par Deus

The Best Bacterial Species That Money Can’t Buy.

Unfortunately, several species of bacteria with some of the very best data are not available commercially, due to regulatory issues and well as practical challenges such as stability and viability of the bacteria themselves. We are working on these, as are several other groups, but it will happen later rather than sooner, at best.

Fortunately, there are a myriad of ways to specifically target and increase these strains using methods that ARE available. And, that is exactly what we have done. So, let’s take a look at these novel wonder-bacteria, and then we will get to the data on B. adolescentis as the ultimate cross-feeding probiotic.


Genus Bacteroides

Bacteroides are butyrate and propionate producing. Levels were 6-fold higher in lean vs. obese subjects, as well as being reduced in obese patients, in general, compared to control populations (60-63). The Firmicutes:Bacteroides ratio was also significantly worse in obese patients, even in comparison with the merely overweight (65, 66). It has a negative correlation with fat mass and waist circumference (66, 67). It was also 60% lower in obese pigs – yeah, apparently that is a thing (68).

Bacteroides levels in Type-2 diabetes were only half that of those with normal glucose tolerance (69). Lower Bacteroides was correlated with increased energy intake (70). Additionally, it was decreased after smoking cessation similar to differences in obese compared to lean subjects suggesting a link between Bacteroides and the weight gain of smoking cessation (71).

Among various species in the Bacteroides genus, B. uniformis reduced bodyweight gain, triglycerides, and adipocyte volume while improving insulin and leptin sensitivity.  It also lowered LPS and other inflammatory signals (72). Bacteroides acidifaciens decreased bodyweight and fat gain, while increasing fatty acid oxidation via PPAR-alpha (73). In addition to an elevated Firmicutes:Bacteroides ratio, B. vulgatus levels were found to be lower in the obese (74).

B. fragilis releases a symbiotic immunomodulatory anti-inflammatory factor called Polysacharride A (75).  This activates TLR-2, which releases anti-inflammatory interleukins. PSA is basically the opposite of LPS, and TLR-2 the opposite of TLR-4 (76). This has been shown not just to prevent but to cure experimental colitis, an extreme version of a leaky, inflammatory gut (77). It has also been shown to prevent demyelination of neurons in the central nervous system, indicative of protection against inflammation well outside of the gut (78).

A few of the Bacteroides species bind to mucins for colonization and consume these mucin polysaccharides (79, 79b). Bacteroides species also have greater glycan degrading capability than Firmicutes, thus they are preferentially increased by polyphenols (80). Primer™ contains both mucin and polyphenols.

 

Faecalibacterium prausnitzii

Faecalibacterium prausnitzii is butyrate producing and is considered a physiological sensor and marker of human health (81). It does not get much more important than that. It is lower in the obese and type-2 diabetics (82-84). Conversely, it is higher in normal glucose tolerance vs. prediabetic subjects (85).

Faecalibacterium prausnitzii is also negatively correlated with inflammatory markers and sharply decreased in inflammatory bowel diseases (84, 86). It is greatly reduced in ulcerative colitis and less abundant in Crohn’s disease (87, 88). As would be expected from the above, it improves intestinal barrier function (89).

 

Akkermansia muciniphilia

Akkermansia muciniphilia is mucin degrading, meaning it feeds on mucins (90). Levels are higher in lean subjects than the general population (91).  It is also decreased in obesity and type-2 diabetes. Its administration reduced fat mass, adipose tissue inflammation, and enhanced insulin sensitivity. Along with this, improved gut barrier function and increased intestinal endocannabinoid levels were seen (92).

This species is also inversely related to fasting glucose, waist-to-hip ratio, subcutaneous adipocyte diameter, plasma triglyceride levels, visceral adipose tissue mass, and insulin resistance (93). Along with enhanced glucose tolerance, it reduced adipose tissue inflammation (94). Akkermansia levels are higher in normal glucose tolerance vs. pre-diabetic subjects (95). It decreased inflammatory cytokine production and protected intestinal barrier function in experimental colitis (96). Finally, its levels are reduced in ulcerative colitis (97).

 

Roseburia Species

Roseburia species are butyrate producing (98). An increase in this species is associated with decreased body weight, fat mass, insulin sensitivity, and triglycerides -- independent of calorie intake (99). Increased Roseburia correlated with reduced body weight, improved profile of lipid and obesity related gene expression, along with a normalized inflammatory status (100). It is also lower in type-2 diabetes (101). Levels are increased by a Mediterranean diet, as is insulin sensitivity (102). Roseburia is enriched in healthy populations vs. those with atherosclerosis (103). And, its levels display an inverse correlation with disease activity in ulcerative colitis (104).

High protein/low carbohydrate diets, which are so effective and popular, reduce Roseburia and SCFA levels (105, 106). This does not mean don’t use them, it just means make sure you make a point to get fiber/prebiotics to feed your good bacteria that produce SCFAs. Butyrate is especially important amongst the SCFAs, as it the preferred energy source, along with Glutamine, for epithelial cells in the colon (107). Butyrate is basically the fat to Glutamine’s protein and carbohydrate as far as feeding these cells. We will talk more on Glutamine in the Primer™ write-up.

 

Bifidobacterium adolescentis as Cross-Feeder

As mentioned, B. adolescentis is hugely important in helping to feed other bacteria, specifically the really good ones that we just talked about, which we cannot get commercially.

B. adolescentis is superior to other potential cross-feeding Bifidobacterium in that it provides a slow, steady degradation of oligosaccharides for a long, continuous release of substrate for these various bacteria to feed on. It is essentially time-released, allowing acetate feeding, butyrate producing bacteria to grow and thrive throughout the entire length of the gut (108).

Faecalibacterium prausnitzii is almost fully dependent on acetate, which B. adolescentis supplies. F. prausnitzii converts it to butyrate with 85% efficiency, and its growth is enhanced by co-culture with B. adolescentis (109, 110).

Roseburia is also an acetate user (111). It is, in fact, generally required for growth (112). In addition to acetate production, B. adolescentis increases Roseburia via partial breakdown of oligosaccharides, which it can then utilize (113).

Cross-feeding with Bifidobacterium modulates the prebiotic effect of inulin and arabinoxylan-oligosaccharides on Roseburia and F. prausnitzii by making acetate available (114). Roseburia was able to grow in pure complex carbohydrate cultures, which it cannot metabolize on its own, owing to cross-feeders (115).

 

Short Chain Fatty Acids (SCFAs)

One of the primary ways that probiotic bacteria work their magic is by fermenting prebiotics and producing SCFAs (primarily acetate, butyrate, and propionate), so we are going to talk about those, and how they work.

They primarily work through two mechanisms: 1) activation of free fatty acid receptors, FFA2 and FFA3. 2) Decreasing inflammation and permeability in the gut.

SCFAs protect against obesity and insulin resistance. Butyrate and propionate induce anorectic gut hormones, while acetate does so without reducing food intake (Supplementary 1). FFAR2 deficiency results in obesity on a normal diet, whereas with overexpression, subjects remain lean, even on an obesity promoting high-fat diet. Activation of FFAR2 suppresses insulin signaling in adipocytes, which inhibits fat accumulation in adipose tissue and promotes the metabolism of lipids and glucose in other tissues such as muscle (S2).

Propionate and butyrate activate intestinal gluconeogenesis. Butyrate does so through AMPK, while propionate works through a gut-brain neural circuit involving FFAR3 (S3). Propionate is sensed in the portal vein walls via FFAR3, initiating intestinal gluconeogenesis. This glucose then triggers a signal to the brain to modulate hunger sensations and normalize whole body glucose homeostasis (S4). In a fasting state, as much as 62% of infused propionate is converted to glucose, accounting for 69% of total glucose production (S5). This is quite applicable to lower carb diets. Basically, it makes your brain think you are plenty fed with carbs/glucose, so it signals not to eat more, as well as not to produce or pump out more glucose into the blood.

SCFAs also stimulate the release of anorectic and satiey inducing peptides like GLP-1 and PYY via FFAR2/3 (S6, S7). Activation of FFAR3 by SCFAs inhibits insulin secretion and increases sympathetic outflow. This raises energy expenditure and help to protect against obesity (S8, S9). Acetate has been found to increase brown adipose tissue, UCP1, and mitochondrial biogenesis via FFAR2 (S10).

Short-chain fatty acids also improve intestinal barrier function via activation of AMPK (S11). Sodium butyrate has been specifically found to be an AMPK agonist (S12). And, butyrate increase tight junction assembly, thus improving barrier function, specifically through AMPK (S13, S14).

This seems like as good of a place as any to add a bit more about AMPK, as it is one of the major targets in all of this.

AMPK

AMPK is a primary signaler in the maintenance of tight junction integrity and intestinal barrier function. It is one of the most important pathways in preventing the “leaky gut” we have spoken of earlier in regard to LPS and other inflammatory and infectious molecules escaping into the body to wreak havoc (S15, S16). Modern food processing and the Western diet is a particularly egregious malefactor in this (S17).

In addition to its involvement in barrier function, AMPK activation is extremely positive for the great bacteria that we can’t get commercially.

Metformin increased Akkermansia 18-fold through AMPK activation. Also, against a high-fat diet, it restored Bacteroides levels and the Firmicutes:Bacteroides ratio to that of  lean subjects (S18-S20). It inhibited LPS induced inflammation and gut permeability increases, while improving glucose uptake and insulin sensitivity (S19). Akkermansia increases are likely at least partially due to greatly elevated production of its favorite food, mucin, which is stimulated by AMPK. It also reduces insulin resistance and adipose tissue inflammation in a high-fat diet (S20).

For references, see "View Full Science Write-Up" here: http://neobium.org/product-line/primer/

Par Deus

Shock Therapy™ Ingredients

Anti-Bacterial:

Tyrosol
Tyrosol is one of the major components of virgin olive oil. In addition to being delicious, virgin olive oil is well known as being healthy – and, Tyrosol is one of the big reasons why. For our purposes, its potent antimicrobial activity, particularly against pathogenic and otherwise unwanted bacteria, is of primary importance.

At just 10uM,  Tyrosol produced 50% inhibition of Pseudomonas aeruginosa. Perhaps more importantly, it is quorum sensing (which means it notices and responds to an increase in growth and density of bacteria), and it inhibits the production of virulence factors (molecules that aid in colonization of host by pathogenic bacteria).  It did not affect the bacterial wall, as many natural anti-bacterials do (35). This differing mechanism is likely why it was found to be synergistic with a number of other natural anti-bacterial compounds (36).

Tyrosol has been found to possess anti-bacterial action as potent as synthetic commercial disinfectants (37). Maybe more impressive, it is as potent as several pharmaceutical antibiotics such as gentamicin, amikacin, and ciprofloxacin (38). Finally, it has displayed efficacy over a very wide range of bacterial strains, which is perfect given that there are 1000s of strains in the gut (39).

  
L-Menthol

Menthol is best known for its use in cold and nasal relief products, as well as muscle balms. It has that icy, minty smell.

It shows very robust antibacterial activity, being more effective  than pharmaceutical antibiotic streptomycin against a wide array of bacteria (40). In fact, it is almost twice as potent as streptomycin against many of them (41).

Its antimicrobial activity appears to be mostly due to the ability to disrupt bacterial membrane structure and function (42). The mechanism being a perturbation of the lipid fraction of the microorganism’s plasma membrane, resulting in increased permeability and leakage of intracellular materials out of the cell (43). Basically, it cuts them open, and their guts fall out. This membrane disruption also renders the bacteria vulnerable to other antibiotics, for a synergistic effect (44).

 

Curcumin
Circumin is the spicy component of mustard seed as well as turmeric. It displays interesting mechanisms of action as well as strong potency at around 7-60 ug/ml on a number of bacterial species (45). It was effective at 20ug/ml with several additional species, inhibiting biofilm formation by 80% at this concentration (46). Most interestingly, it also disrupts bacterial cytokinesis, the physical process of cell division, in the low micromolar range, with a dissociation constant of just 7.3+/-1.8 uM (47). In other words, it keeps them from reproducing and does so effectively.

 

Hyperforin
The most potent and most interesting anti-bacterial of all is Hyperforin, a component of St. John’s Wort. It is an extremely, extremely impressive anti-bacterial. It is effective at concentration as low as 100 ng/ml against Staph. This is considerably more potent than many pharmaceutical antibiotics  -- we’re talking 10-100 fold more (48). It has been shown effective at .1-1 ug/ml on numerous other bacterial species (49).

As ultra-potent as it is, it also works by an unusual mechanism,  stimulating natural host defense reactions, such as enhancement of phagocyte functions and elimination of bacterial breakdown products that would otherwise promote virulence. For this reason, it is considered an extremely promising compound in situations of antibiotic resistance such as with MRSA and for AIDS patients (50).

 

Zingerone
Finally, we come to Zingerone, a component of ginger, which is not terribly potent on its own with an MIC of 1-2mM (51). Its value is as an adjunct ingredient, potentiating the effects of our other antibiotics, by interfering with several processes of bacterial growth and colonization.

It inhibits the formation of biofilms that allow bacteria to adhere to the cell wall and form a barrier that protects them from antibiotics and phagocytosis from the immune system (52). Further, it silences quorum sensing, the process by which bacteria release molecules signaling colonization when a sufficient density it achieved. It also reduces the production of numerous virulence factors which allow the pathogen to do such things attach to cell walls, move around, evade immunity, and derive nutrition from the host (53).

Basically, it just terrorizes them at all levels. Kills their livestock, poisons their wells, burns down their houses, and absconds with their children. In combination with a wide array of other antibiotics, it was found to decrease minimum inhibitory concentrations needed by 2 to 8-fold (54).


All in all, Shock Therapy™ gives you 5 highly effective natural anti-bacterials, working synergistically through just about every mechanism possible. Invasive, enemy combatant bacteria do not have a chance. But, just as antibiotics do not get rid of an infection on the first day, they won’t destroy the bad bacteria in your gut immediately.

But, not to worry, several ingredients in Shock Therapy™ also have properties which are immediately ameliorative and healing. So, they will already be providing relief and working on several fixes in the gut while the anti-bacterials are getting your renegade microbiota under control.


See "Full Science Write-up" here http://neobium.org/product-line/shock-therapy/#1 for references.

 

Par Deus

Shock Therapy™
Microbiotic Rebirth™

There are trillions of bacteria, living and breeding inside your body, right now. You need some of them to survive, but many of them hate you. For most people, due to genetics and/or diet, the evil ones have gotten the upper hand, attacking you with not only fat gain, but whole body inflammation accompanied by damage to insulin sensitivity, cardiovascular and digestive health, the immune system, and even your skin and brain. Shock Treatment™ combines 5 potent, natural antibiotics to seek out and destroy them, freeing the kingdom of your gut to be repopulated with loyal, benevolent bacterial citizens.


Introduction

Currently, probiotics are mostly thought of and used in relation to a healthy digestive system (reducing upset stomach, gas and bloating, diarrhea, and IBS type symptoms) and the immune system (coughs, colds, and general sinus and respiratory health). While they certainly are indeed useful for such applications, the ramifications of an unhealthy gut and microbiota go far, far beyond that.

The gut and its microbiome are essentially a massive endocrine organ, controlling and influencing basically your entire body and brain. And, given that all of the trillions of bacteria that call it home originally came from outside your body – and entered without your permission – it is by far the most important organ in which we can take steps to manipulate and take back control.

We will first look at some basic science and data on how this all works. Then, we will look at studies that have shown alterations in the microbiotic make-up of the gut, and the correlations they display in health and disease, suboptimal and optimal fitness, and just general things that everyone would consider part of good or bad life outcomes. 

It is a massive subject, far too much to discuss in complete depth, here, so we’ll do our best to keep it as short and sweet as possible while still giving you enough background in this field to understand the shocking reality, scope, and importance of this microscopic invasion.

Subsequently, we will get down to business and specifically get into the science of Shock Treatment™, the first step in the process of making yourself king or queen of your own castle, again. We’ll show you how it can immediately ameliorate symptoms, while preparing the gut for a permanent fix, with special emphasis on a lean, healthy body.

Deus Vult!


The Basics

It basically works like this. The Western lifestyle, including diet, lack of exercise, and alcohol use (and, in all likelihood, genetics, though the data just isn’t there, yet) leads to an imbalance of the bacterial composition of the gut (1,2). This results in the excess production and release of inflammatory signals, such as Lipopolysaccharide, TNF-alpha, interleukins, and prostaglandins, which subsequently escape the gut and enter the rest of your body (3).

Though, they all contribute to the pathologies we will cover in various ways, it is Lipopolysaccharide (LPS) that we will focus on the most. Within the gut, this leads to the general digestive issues and inflammatory bowel syndromes like IBS and colitis that you have commonly known probiotics as being used to alleviate (4).

While fixing digestive disorders will come along for the ride, our primary focus is going to be on body composition and metabolic health. In other words, we want to make you leaner, protect against diabetes, and help keep you from having a heart attack or stroke. However, there really is so much more to it than that, as a few quotes from the literature aptly demonstrate:

“Changes in the composition of the gut microbiota (dysbiosis) may be associated with several clinical conditions, including obesity and metabolic diseases, autoimmune diseases and allergy, acute and chronic intestinal inflammation, irritable bowel syndrome (IBS)…” (5)

“In this milieu… disturbance of the gut microbiota balance and the intestinal barrier permeability is a potential triggering factor for systemic inflammation in the onset and progression of obesity, type 2 diabetes and metabolic syndrome.” (6)

“Through these varied mechanisms, gut microbes shape the architecture of sleep and stress reactivity of the hypothalamic-pituitary-adrenal axis. They influence memory, mood, and cognition and are clinically and therapeutically relevant to a range of disorders, including alcoholism, chronic fatigue syndrome, fibromyalgia, and restless legs syndrome… Nutritional tools for altering the gut microbiome therapeutically include changes in diet, probiotics, and prebiotics.” (7)

As you can see, alterations in the microbiota can affect basically everything, but that there is also hope for change.

Getting back to the gut and body composition, the aforementioned Lipopolysaccharide (LPS) leads to overactivation of cannabinoid receptor 1 (CB1) within the gut, which causes an increase in intestinal motility (speed of food going through) in the proximal parts of the intestine. This leads to less absorption of nutrient feedback signals that tell the brain you are well fed, and that it is time to stop eating (8). Concurrent with this is an increase in transit time in the colon, which results in a greater total harvest of caloric energy from your food (9, 10).

In other words, the signal your brain is getting is that you are not getting enough food, while you are actually extracting more calories from what you eat. This not only directly leads to more fat accumulation from harvesting more calories, it lends itself to over-eating. This aggravates the cycle further, as overeating and increased adiposity are themselves inflammatory. So, what you have is more inflammation, more dysfunction, greater food intake, greater extraction of food, more fat accumulation, then REPEAT!

The carnage does not even end here. Along with this inflammatory state is a disruption in the intestinal barrier. Intestinal permeability is increased and these inflammatory agents spill out systemically. This is often called a “leaky gut”. This results in a low-level inflammatory state in the entire body. The biggest culprit here is, once again, LPS (11).

LPS activates CB1 receptors in the body and brain, just as in the intestine. In the fat tissue, this leads to activation of PPAR-gamma, and an upregulation of triglyceride synthesis, fat cell formation, and fat storage (12). In the brain, activation of CB1 increases orexegenic pathways, thus increasing appetite, hunger, and ultimately, food intake (13). This should not much as much of a surprise considering “the munchies” that accompany intake of famous cannabinoid receptor agonist, marijuana.

And, LPS is not done yet, not at all. It also activates Toll-like Receptor 4 which, along with other inflammatory signals (TNF-alpha, interleukins), promotes both insulin and leptin insensitivity, peripherally and centrally (14, 15). At this point, your adipostat (the thermostat for your body fat level) is wrecked. Your ability to control food intake is gone, and you are a fat storing machine. Obviously, this is not what you want your body doing to itself. It is not what you want it doing to you. It is not what you want it doing to your life.

Oh, and to top it off, atherosclerosis, heart disease, and stroke are promoted by these same inflammatory pathways. Combined with the increased body fat and insulin resistance, you officially have all of the perfect ingredients for the dreaded Metabolic Syndrome (16, 17).

And, it is just a bunch of microscopic bacteria that call your gut “home” causing all of this devastation.

 


See "Full Science Write-up" here http://neobium.org/product-line/shock-therapy/#1 for references.

Par Deus

SupraBiotic™ Ingredients

Bifidobacterium are anti-obesity and lipid lowering, decreasing fat weight, blood glucose, cholesterol, and triglyceride levels (35). They are higher in lean subjects, as well as being lower in obese (36, 37). They are significantly lower in type-II diabetics and have been shown to improve glucose tolerance as well to decrease inflammatory signaling (38-40). In addition, they increase levels of fish oils EPA and DHA, as well as conjugated linoleic acid (CLA), in fat tissue and the brain (40). They have also been found to be reduced with aging (41).

We can also readily manipulate levels of the good bacteria that are not commercially available such as Bacteroides species, Roseburia species, Akkermansia Muciniphilia, and Facealbacterium Prausnitzii via supplementation of ingredients that ARE available.

You may have noticed that almost no probiotic formulas contain just a single species of bacteria, nowadays. And, if you did not, I will just say that it is for a good reason. They work better in combination.

First of all, microbial diversity seems to be good, in and of itself. Essentially, a diverse gut is a healthy gut (42). Obesity has been associated with a lack of microbial diversity and, as you might expect, lean subjects have greater microbial diversity in the gut (43-45). Insulin sensitivity is also improved along with diversity increases (46).  Finally, in the interesting but not terribly shocking category, exercise increases microbial diversity (47, 48).

Combinations also work to specifically create an environment where probiotic bacteria can thrive, thus enhancing their ultimate performance (49). Compared to individual strains alone, it greatly increases adhesion to intestinal mucus, which is necessary for most survival, growth, and activity (50, 51).  Conversely, they inhibit adhesion of pathogenic bacteria better when in combination (52, 53).

However, you do not want to just throw every single commercially available species and strain into a product as so many companies do. They need to be rationally combined. If not, they can interfere with each other’s actions and compete for space and resources (54-56).

But, the most interesting benefit of probiotic combinations is through cross-feeding. This is when one bacterial strain produces metabolites the others use for fuel (57).

We will get into this in detail, in a bit. Right now, let’s get to the SupraBiotic™ probiotic combination.
 

Bifidobacterium breve
B. breve supplementation significantly suppressed the accumulation of body weight and fat mass, while improving serum levels of total cholesterol, fasting glucose, and insulin (58). The expression of genes related to fat metabolism and insulin sensitivity in both the gut and fat tissue was upregulated by its administration (59). It also improved lipid levels and insulin resistance while lowering bodyweight (60).

In addition, B. breve combats the cycle of LPS inflammation, leaky gut, and insulin/leptin resistance.  It reduced LPS activity 60% and quelled general colonic inflammation, particularly TNF-alpha, a downstream signal of LPS (61-63). It also upregulated anti-inflammatory pathways such as interleukin-8 and Toll-like Receptor-2 (64, 65). The latter having the opposite effect as TLR-4. Ultimately, it is reinforcing on intestinal epithelial cells and mucosa, improving the physical barrier of the intestine (66, 67).

 

Bifidobacterium animalis subsp. lactis
B. animalis subsp. lactis ferments a wide range of oligosaccharides quite extensively, so it is very versatile, being viable under numerous different conditions (68).  It increased short chain fatty acid (SCFA) production to distal parts of the colon, meaning it has a long acting mechanism of action (69). We will discuss SCFAs a good bit more below, but they provide fuel for intestinal barrier repair, as well as having other metabolic benefits – and, their production is one of the main ways probiotics exert their positive effects.

This species is negatively associated with body mass index in humans, and increased levels are associated with resistance to obesity (70-71). It prevents weight gain, reduces fat mass accumulation and LPS levels, while preserving glucose tolerance in the face of a high-fat diet (72, 73). Administration shifts the microbiota toward that of a lean phenotype while reducing inflammatory activity (73). Interestingly, it also improved the efficacy of diabetic drug and AMPK agonist metformin, suggesting potentiation with that pathway (74). Other direct metabolic improvements were enhanced energy and lipid metabolism, as well as an increase in markers of satiety (75).

Switching to complementary mechanisms, B. animalis subsp. lactis limits increases of pro-inflammatory signals, supporting mucosal recovery to stress (76). It increases tight junction proteins, restoring normal intestinal permeability and preserving gut barrier function in the face of inflammation (77). Finally, it prevents translocation of pathogenic bacteria from intestine to body tissue, reversing inflammation induced insulin resistance (77).

 

Lactobacillis Plantarum
L. plantarum has a great deal of good data.  Levels are higher in lean subjects than in the overfat (78).  It lowered plasma glucose, insulin, triglycerides, and oxidative stress levels (78b). Further, it reduced lipogenesis and increased fatty acid oxidation via up-regulation of PPARalpha (79). It inhibits the formation of fat cells while decreasing adipose size as well as white adipose tissue mass (80, 81).  L. plantarum also reduced weight gain and fat accumulation, upregulated fatty acid oxidation, while improving insulin and leptin sensitivity against an obesity promoting diet (82, 83).

In addition to reducing weight gain and fat mass, it also lowered blood triglyceride levels, while improving leptin sensitivity and intestinal permeability (83). Remarkably, it led to a significant increase in leptin levels, concurrent with weight loss (84). Weight loss typically results in augmented leptin sensitivity, but decreased leptin levels, which is one of the primary causes of hitting the wall on fat loss with prolonged dieting. L. plantarum also improved glucose levels and insulin sensitivity – and, continuing with its remarkable effects, it increased weight with same body fat (85). This means it seemingly helped direct calories toward muscle formation instead of fat.

It was more potent in combination with other probiotics as well as with polyphenols in reducing fat accumulation and improving metabolic alterations (86, 87). Another nice perk, in a comprehensive formula like SupraBiotic™, is that it increased levels of the genus Bacteroides while reducing the Firmicutes:Bacteroides ratio that is associated with obesity (88, 89).

L. plantarum also displays potent anti-inflammatory actions, attenuating signaling of LPS and TLR-4, as well as COX-2, TNF-alpha, and inflammatory interleukins (90, 91). The reduction in inflammatory responses downstream of the LPS signaling pathway was consistently found in several studies (92, 93). Improvements of inflammatory colitis were also seen with L. plantarum (94, 95).  Finally, it increased tight junction protein formation and improved intestinal barrier function (96-98).

 

Lactobacillis gasseri
L. gasseri is consistently associated with weight loss in both animals and humans in the literature (99). It mitigates bodyweight and fat mass increases in obesity promoting diets (100). It decreases body fat in both in visceral and subcutaneous adipose, while also increasing insulin and leptin sensitizing peptide adiponectin (100-101).  This loss of visceral adipose tissue was associated with attenuation in inflammatory gene expression (102).

This species elevated total energy expenditure, while diminishing body weight gain and improving glucose tolerance (103). It reduced bodyweight, triglycerides, and lipogenic genes, while augmenting insulin and leptin sensitivity (104, 105).

Finally, L. gasseri increases tight-junction protein expression and improves intestinal barrier function (106). It elevated levels of the short chain fatty acid, butyrate, relieving inflammatory signaling (103). And, in kind, it decreases intestinal permeability, LPS production, and adipose tissue inflammation (107, 108).

 

Lactobacillis Rhamnosum
L. rhamnosum reduces fat mass, fat synthesis, and improves the obesity associated Firmicutes:Bacteroides ratio (109). It prevented weight gain in diet induced obesity (110). In women, it decreased fat mass, increased weight loss, and improved leptin sensitivity (111). Perhaps most notably, it reduced bodyweight and increased insulin and leptin sensitizing peptide adiponectin while also increasing leptin levels (112). As previously mentioned, leptin normally decreases along with metabolism and appetite control during weight loss, so this is a really nice effect.

Administration of L. rhamnosum resulted in decreased weight gain, with enhanced fatty acid oxidation, insulin sensitivity, and adiponectin via activation of AMPK in both adipose and skeletal muscle tissue (113). It has also been shown to reduce bodyweight and adipose tissue, with increased conjugated linoleic acid (CLA) formation and upregulation of thermogenic protein UCP2 and leptin sensitivity (114, 115).  

On the inflammation and gut barrier side of things, L. rhamnosum decreased LPS and LPS induced systemic inflammatory markers including IL-6, COX-2, and TNF-alpha (116-118). Relatedly, it also reduces TLR-4 expression (119). Further, it increases tight junction proteins and restores intestinal barrier function, while inhibiting inflammation downstream of LPS (120-122). A novel action of this species is the production of soluble proteins, p40 and p75, which protect against tight junction and barrier function disruption (123). In addition, it raised Bacteroide levels, tight junction proteins, reduced inflammation, and protected barrier function against a high fructose diet (124).

While this very likely goes for our other probiotic bacteria to some extent, L. rhamnosum has a good bit of data in regard to alcohol consumption. It protects against ethanol induced microbiomal changes, inflammation, and pathology (125). It is also protective against ethanol stimulated inflammation and damage via AMPK (126). Finally, it prevented not just inflammation but also gut barrier disruption in response to ethanol (127). Somewhat related, given alcohol’s use as self-medication, it increased GABA activity and was anxiolytic in response to stress (128).

 

Bifidobacterium adolescentis
B. adolescentis does not have a lot of direct data on body composition. It is higher in lean than obese populations and levels predict leanness, in general (129, 130). Administration resulted in reduction in bodyweight, visceral adipose tissue, and fat mass, while improving insulin resistance (131). It also is synergistic with polyphenols as an anti-inflammatory (132).

See "Full Science Write-up" here http://neobium.org/product-line/suprabiotic/ for references.

Par Deus
General Data 

The most well-known genera of bacteria in commercial probiotics are Lactobacillus and Bifidobacterium. They are also among the most common in the body, along with several other ones which are not commercially available, but which we can manipulate with supplementation.  We will talk about these in length in the SupraBiotic™ and Primer™ write-ups.

Unfortunately, Lactobacillus belong to the Firmicutes phylum which has been found to be associated with weight gain and obesity (18-20). Just a 20% increase in Firmicutes (which Lactobacillus is usually the primary genus) with an equal decrease in Bacteroides results in an increased energy harvest of 150 calories per day in humans (21). That is equal to 15lbs of fat per year!  The Western style diet promotes these negative changes in microbial proportions (22). Thus, one can plainly see why it can be so difficult to get lean, as well as how easily obesity has become an epidemic.

Interestingly, smoking cessation produces the same negative changes in bacterial composition, while gastric bypass surgery improves it (23-24). The well-known effects on weight with both of these further highlights the negative body compositional effects of this intestinal dysbiosis.

In addition, probiotic treatment with several Lactobacillus species that are in a great number of commercial formulations, including Lactobacillus acidophilus, Lactobacillus fermentum, and Lactobacillus ingluviei , have been directly associated with weight gain and obesity (25). Type-2 diabetics had significantly more Lactobacillus, with L. acidophilus  being particularly bad in this regard (26).  Further, L. Reuteria and L. Sakei have been found to be positively associated with obesity and body mass index (27-29). They probably don’t tell you that on the label.

More powerful evidence of the profound effect of the microbiota on body weight and metabolism come from studies on “fecal transfer”.  And, yes, that is exactly what it sounds like – transferring poop from one subject’s intestine to another’s.

In twins, transfer of an obese microbiota to lean mice was accompanied by an increase in bodyweight,  fat mass, and a dysbiotic alteration of the Firmicutes:Bacteroides ratio to reflect that of the obese model (30). A similar transfer replicated the obese phenotype with increased weight gain, lipogenesis, adipogenesis, overeating, and lower satiety,  as well as inflammation and hyperglycemia in formerly lean, healthy subjects (31, 32).

On the other side of the coin, transferring the intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome, as well as reversing obesity and gastrointestinal  issues (33). It also reduced markers of metabolic syndrome, inflammation, and oxidative stress in animals challenged with high-fructose diets (34).

Obviously, while it highlights the science, doing a fecal transfer is not terribly practical, appetizing,  or readily available -- unless maybe you are in California.

Fortunately, there is good news. While several species and strains of Lactobacillus have been found to promote weight gain, several have also been found to protect against it. And, of course, we only used the good ones. Furthermore, Bifidobacterium research has shown only positive effects to a rather remarkable extent. And, as mentioned, we can also manipulate levels of the good bacteria that are not commercially available, as we will detail in the SupraBiotic™ and Primer™ write-ups.

Right now, let’s get to talking about how we can get rid of the bad bacteria already inside you.

See "Full Science Write-up" here http://neobium.org/product-line/shock-therapy/#1 for references.

Par Deus

Immediate Action:

Ginsenosides
Ginsenosides are the primary active component of ginseng, the ethno-panacea used in traditional medicines for 100s of years. They have displayed potent antibacterial activity, themselves, or through metabolites such as 20(s)-protopanaxadiol, but that is not the primary reason for its inclusion (55-56).

It is of most importance as an adaptogen.  Adaptogens regularizes bodily functions and relieves many ailments resulting from physiological stress. It puts things in balance and creates homeostasis. If the body is doing too much of something, it reduces it. If it is doing too little, it increases it.  This category basically does not exist in the Western scientific literature and medicine, so I am not going to reference data.  Its most well understood mechanism of action in the literature is being a potent, widespread anti-inflammatory.

Ginsenosides and their metabolites, such as Compound K, decrease an array inflammatory signals like TNF-a, IL1B, IL6, Cox-2, and iNOS while increasing anti-inflammatory IL10 (57, 58). They also specifically block LPS induced inflammatory pathways (59). We mentioned it previously, but you will hear much more about LPS in the SupraBiotic™ and Primer™ write-ups, as it is the molecular bridge between dysfunction of the gut and dysfunction of the body.

 

Zingerone
As mentioned, Zingerone is a component of ginger, which is well known for its use in aiding digestive issues such a nausea and stomach pain. Its method of action in this regard is an anti-inflammatory (60).

It inhibits the all-important LPS, as well as TNF-alpha, inflammatory interleukins, and COX-2 (61, 62). It also directly inhibits the Toll-like receptor 4 signaling pathway (63). TLR-4 is another one you will hear a decent bit more about in the SupraBiotic™ and Primer™ write-ups, but recall that it links LPS inflammation with the reduced insulin and leptin sensitivity that results in the cascade of type 2 diabetes and dysfunction of hunger and appetite regulation in the brain.

Zingerone is also quite potent at PPAR-alpha being comparable to pharmaceutical fibrates (64). In addition to being anti-inflammatory, it is a primary pathway of increased fatty acid oxidation. It works in conjunction with AMPK, which we will discuss more in a bit. And, yes, we will discuss both PPAR-alpha and AMPK in the SupraBiotic™ and Primer™ write-ups. PPAR-alpha and AMPK are basically the anti-LPS to TLR-4/CB1 pathway.

 

Hyperforin
Hyperforin is a super potent anti-oxidant and anti-inflammatory, in addition to super potent anti-bacterial, with radical scavenging at less than 1uM – this is 100 times more potent than N-acetyl cysteine (65).

It suppresses inflammatory prostaglandin PGE(2) biosynthesis better than prescription NSAID indomethacin, as well as inflammatory 5-lipoxygenase end product formation comparably to the research standard 5-LO inhibitor zileuton (66).  It suppressed COX-1 product  12(S)-hydroxyheptadecatrienoic acid formation with about 3 fold more potency than aspirin, while being 18-fold more potent on 5-LO (67).

This is just a really cool and powerful compound in a lot of ways – and, most people probably just think of St. John’s Wort and components as anti-depressants. In any case, the efficacy of Hyperforin should make you happy.

 

Curcumin
Circumin is another anti-bacterial friend with anti-inflammatory benefits. It mediates its anti-inflammatory action through AMPK.  In fact, it displays 400 times the potency of metformin, a Type-2 diabetes medication, with the well-known “side-effect” of fat loss (68).

AMPK is a primary signaler in the maintenance of tight junction integrity and intestinal barrier function. It is the one of the most important pathways in preventing the “leaky gut” we spoke of earlier in regard to LPS and other inflammatory and infectious molecules escaping into the body to wreak havoc (69, 70). Modern food processing and the Western diet are particular culprits in this pathology (71).

As we would expect from its super potency,  it indeed protects against LPS-induced increases in production of inflammatory TNF-α, MIP-2, and IL-6, as well as tissue injury – and, it does so via AMPK activation (72). It reduces the levels of Toll-like Receptor-4 (the insulin and leptin sensitivity killer), while attenuating inflammation and symptoms of colitis (73). 

 

Conclusion

So, there you have it.

Shock Therapy™ -- a first of its kind product which aggressively attacks the genesis of microbiotic dysfunction, including digestive health, metabolic health, and body composition, while promptly and effectively addressing and repairing avenues where this dysfunction is made manifest. You will have immediate relief of symptoms as well as steady restoration of broken systems, while the bacterial culprits are destroyed, paving the way for SupraBiotic™ and Primer™ to completely transform your gut, your body, and your health.

See "Full Science Write-up" here http://neobium.org/product-line/shock-therapy/#1 for references.

Sign in to follow this  
×